Investigation on particle motions and resultant impact erosion on quartz crystals by the micro-particle laden waterjet and airjet

2020 ◽  
Vol 360 ◽  
pp. 452-461 ◽  
Author(s):  
Li Zhang ◽  
Renquan Ji ◽  
Yufei Fu ◽  
Huan Qi ◽  
Fanzhi Kong ◽  
...  
AIP Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 085203 ◽  
Author(s):  
D. H. Cai ◽  
H. Qi ◽  
D. H. Wen ◽  
L. Zhang ◽  
Q. L. Yuan ◽  
...  

1997 ◽  
Vol 161 ◽  
pp. 203-218 ◽  
Author(s):  
Tobias C. Owen

AbstractThe clear evidence of water erosion on the surface of Mars suggests an early climate much more clement than the present one. Using a model for the origin of inner planet atmospheres by icy planetesimal impact, it is possible to reconstruct the original volatile inventory on Mars, starting from the thin atmosphere we observe today. Evidence for cometary impact can be found in the present abundances and isotope ratios of gases in the atmosphere and in SNC meteorites. If we invoke impact erosion to account for the present excess of129Xe, we predict an early inventory equivalent to at least 7.5 bars of CO2. This reservoir of volatiles is adequate to produce a substantial greenhouse effect, provided there is some small addition of SO2(volcanoes) or reduced gases (cometary impact). Thus it seems likely that conditions on early Mars were suitable for the origin of life – biogenic elements and liquid water were present at favorable conditions of pressure and temperature. Whether life began on Mars remains an open question, receiving hints of a positive answer from recent work on one of the Martian meteorites. The implications for habitable zones around other stars include the need to have rocky planets with sufficient mass to preserve atmospheres in the face of intensive early bombardment.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Asror Mustafakulov ◽  
Fazliddin Arzikulov ◽  
Urolbek Abdimurodov
Keyword(s):  

2018 ◽  
Author(s):  
Mahesh Ediriweera ◽  
Chandana Rathnayake ◽  
Jana Chladek ◽  
Reidar Arneberg

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 195 ◽  
Author(s):  
Wenheng Liu ◽  
Xiaodong Liu ◽  
Jiayong Pan ◽  
Kaixing Wang ◽  
Gang Wang ◽  
...  

The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 5.2 Ma (MSWD (mean standard weighted deviation)= 1.5, n = 14) and 432.8 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter M. Schutjens ◽  
Christopher J. Spiers ◽  
André Rik Niemeijer

AbstractIntergranular pressure solution plays a key role as a deformation mechanism during diagenesis and in fault sealing and healing. Here, we present microstructural observations following experiments conducted on quartz aggregates under conditions known to favor pressure solution. We conducted two long term experiments in which a quartz crystal with polished faces of known crystallographic orientation was embedded in a matrix of randomly oriented quartz sand grains. For about two months an effective axial stress of 15 MPa was applied in one experiment, and an effective confining pressure of 28 MPa in the second. Loading occurred at 350 °C in the presence of a silica-saturated aqueous solution. In the first experiment, quartz sand grains in contact with polished quartz prism ($$\overline10{1 }0$$ 1 ¯ 010 ) faces became ubiquitously truncated against these faces, without indenting or pitting them. By contrast, numerous sand-grain-shaped pits formed in polished pyramidal ($$17\overline{6 }3$$ 17 6 ¯ 3 ) and ($$\overline{4 }134$$ 4 ¯ 134 ) crystal faces in the second experiment. In addition, four-leaved and (in some cases) three-leafed clover-shaped zones of precipitation formed on these prism faces, in a consistent orientation and pattern around individual pits. The microstructures observed in both experiments were interpreted as evidence for the operation of intergranular pressure solution. The dependence of the observed indentation/truncation microstructures on crystal face orientation can be explained by crystallographic control of stress-induced quartz dissolution kinetics, in line with previously published experimental and petrographic data, or possibly by an effect of contact orientation on the stress-induced driving force for pressure solution. This should be investigated in future experiments, providing data and microstructures which enable further mechanism-based analysis of deformation by pressure solution and the effect of crystallographic control on its kinetics in quartz-rich sands and sandstones.


2017 ◽  
Vol 305 ◽  
pp. 562-571 ◽  
Author(s):  
Zhe Lin ◽  
Yifan Zhang ◽  
Yi Li ◽  
Xiaojun Li ◽  
Zuchao Zhu

Sign in / Sign up

Export Citation Format

Share Document