Aiming at low-oxygen titanium powder: A review

Author(s):  
Kumar Debajyoti Jena ◽  
Sherry Xu ◽  
Muhammad D. Hayat ◽  
Wen Zhang ◽  
Peng Cao
Keyword(s):  
1993 ◽  
Vol 40 (4) ◽  
pp. 405-409
Author(s):  
Masatomo Kamada ◽  
Setsuo Takaki ◽  
Youichi Tokunaga ◽  
Yasuyuki Ikeda ◽  
Hiroaki Shiraishi

2021 ◽  
Vol 59 (3) ◽  
pp. 149-154
Author(s):  
Jung-Min Oh ◽  
Jaeyeol Yang ◽  
Jaesik Yoon ◽  
Jae-Won Lim

In this study, an effective method is demonstrated for fabricating titanium sputtering targets, which are used to fabricate thin films in the semiconductor industry. The method is an alternative to the existing electron beam melting (EBM) process under high vacuum. Titanium sputtering targets used in the production of semiconductors must have very low concentrations of gaseous impurities, especially oxygen, as well as metal impurities. Currently, the oxygen concentration in titanium sputtering targets used for industrial purposes is less than 400 ppm. To develop an effective alternative method, powder metallurgy and melting processes were performed to prepare a low-oxygen titanium ingot with less than 400 ppm oxygen. First, titanium powder was deoxidized using calcium vapor, and then the powder was subjected to vacuum arc melting (VAM). The oxygen in the titanium powder was reduced with calcium vapor from an initial concentration of 2200 ppm to 800 ppm, and the resulting powder was melted using VAM, resulting in titanium ingots with low oxygen content, 400 ppm or less. It was also confirmed that all lattice constants, i.e., <i>d, a, c,</i> and <i>c/a</i>, decreased as oxygen concentration decreased in both the titanium powder and the ingots.


2016 ◽  
Vol 704 ◽  
pp. 68-74 ◽  
Author(s):  
Ming Tu Jia ◽  
Brian Gabbitas

Powder compact forging in combination with induction sintering, a field assisted sintering technique (FAST), was used to produce commercially pure (CP) Ti and Ti-13V-11Cr-3Al parts. Green powder compacts with high relative density were manufactured by cold compaction and warm compaction, respectively. During the powder compact forging process, CP titanium powder was consolidated completely to produce a near net shaped top cover for a diving helmet with full density and good mechanical properties. Also, a Ti-13V-11Cr-3Al alloy was fully consolidated into a cylinder using blended elemental powders. As a comparison, raw titanium powder with different oxygen contents was used to make a Ti-13V-11Cr-3Al powder compact forging. Using a starting powder with low oxygen content, a forged cylinder with good mechanical properties was produced.


2020 ◽  
Vol 31 (9) ◽  
pp. 3774-3780
Author(s):  
Gye-Hoon Cho ◽  
Taeheon Kim ◽  
Jikwang Chae ◽  
Jae-Won Lim

2013 ◽  
Vol 83 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Rebecca L. Sweet ◽  
Jason A. Zastre

It is well established that thiamine deficiency results in an excess of metabolic intermediates such as lactate and pyruvate, which is likely due to insufficient levels of cofactor for the function of thiamine-dependent enzymes. When in excess, both pyruvate and lactate can increase the stabilization of the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, resulting in the trans-activation of HIF-1α regulated genes independent of low oxygen, termed pseudo-hypoxia. Therefore, the resulting dysfunction in cellular metabolism and accumulation of pyruvate and lactate during thiamine deficiency may facilitate a pseudo-hypoxic state. In order to investigate the possibility of a transcriptional relationship between hypoxia and thiamine deficiency, we measured alterations in metabolic intermediates, HIF-1α stabilization, and gene expression. We found an increase in intracellular pyruvate and extracellular lactate levels after thiamine deficiency exposure to the neuroblastoma cell line SK-N-BE. Similar to cells exposed to hypoxia, there was a corresponding increase in HIF-1α stabilization and activation of target gene expression during thiamine deficiency, including glucose transporter-1 (GLUT1), vascular endothelial growth factor (VEGF), and aldolase A. Both hypoxia and thiamine deficiency exposure resulted in an increase in the expression of the thiamine transporter SLC19A3. These results indicate thiamine deficiency induces HIF-1α-mediated gene expression similar to that observed in hypoxic stress, and may provide evidence for a central transcriptional response associated with the clinical manifestations of thiamine deficiency.


Sign in / Sign up

Export Citation Format

Share Document