scholarly journals Recycling of Paleoproterozoic and Neoproterozoic crust recorded in Lower Paleozoic metasandstones of the Northern Gemericum (Western Carpathians, Slovakia): Evidence from detrital zircons

2019 ◽  
Vol 70 (4) ◽  
pp. 298-310
Author(s):  
Anna Vozárová ◽  
Nickolay Rodionov ◽  
Katarína Šarinová

Abstract U–Pb (SHRIMP) detrital zircon ages from the Early Paleozoic meta-sedimentary rocks of the Northern Gemericum Unit (the Smrečinka Formation) were used to characterize their provenance. The aim was to compare and reconcile new analyses with previously published data. The detrital zircon age spectrum demonstrates two prominent populations, the first, Late Neoproterozoic (545–640 Ma) and the second, Paleoproterozoic (1.8–2.1 Ga), with a minor Archean population (2.5–3.4 Ga). The documented zircon ages reflect derivation of the studied metasedimentary rocks from the Cadomian arc, which was located along the West African Craton. The acquired data supports close relations of the Northern Gemericum basement with the Armorican terranes during Neoproterozoic and Ordovician times and also a close palinspastic relation with the other crystalline basements of the Central Western Carpathians. In comparison, the detrital zircons from the Southern Gemericum basement and its Permian envelope indicate derivation from the Pan-African Belt–Saharan Metacraton provenance.

1991 ◽  
Vol 28 (8) ◽  
pp. 1254-1270 ◽  
Author(s):  
Gerald M. Ross ◽  
Randall R. Parrish

We address two problems of Cordilleran geology in this study using U–Pb dating of single detrital zircon grains from metasedimentary rocks: the provenance of the Windermere Supergroup, and the age and correlation of metasedimentary rocks within the Shuswap Complex that are at high metamorphic grade. Because some of these rocks are clearly of North American affinity, the ages of zircons provide indirect constraints on the age and distribution of continental basement from which the zircons were derived.A consistent pattern emerges from ages of about 50 grains from six rocks. Nearly all samples analyzed (48–53°N) are characterized by a bimodal distribution of zircon ages of 1.65–2.16 Ga and > 2.5 Ga, with a distinct lack of ages between 2.1 and 2.5 Ga. Exceptions to this pattern are young zircons from two samples, from Valhalla and Grand Forks – Kettle complexes of southeastern British Columbia, that have grains 1435 ± 35 and 650 ± 15 Ma, respectively. These younger grains are inferred to have been derived from magmatic rocks, and they have no obvious source in either the Canadian Shield or the Alberta subsurface basement to the east. The Early Proterozoic and Archean ages of detrital zircons resemble those of dated basement rocks beneath the Alberta Basin as well as basement exposed within the Cordilleran hinterland (gneisses of Thor–Odin, Frenchman Cap, and Malton regions). However, 2.1–2.4 Ga rocks that are extensive in the subsurface of northern Alberta are not represented in the inventory of detrital zircon ages presented in this paper.This pattern suggests that much of the Cordilleran basement between these latitudes is underlain by Archean crust of the Hearne–Wyoming provinces that may be mantled to the west by an orogenic–magmatic belt of Early Proterozoic (1.7–1.9 Ga) age which may largely have been parallel to the present Cordilleran orogen.


2022 ◽  
Author(s):  
Cristina Accotto ◽  
David Martínez Poyatos ◽  
Antonio Azor ◽  
Cristina Talavera ◽  
Noreen Joyce Evans ◽  
...  

ABSTRACT Detrital zircon U-Pb geochronology has been widely used to constrain the pre-Carboniferous geography of the European and, to a lesser extent, the Moroccan Variscides. The latter have been generally considered as part of a long-lasting passive margin that characterized northern Gondwana from Ordovician to Devonian time, and was subsequently involved in the late Paleozoic Variscan orogeny. We report detrital zircon ages for three Early to Late Ordovician samples from the Beni Mellala inlier in the northeastern part of the Western Moroccan Meseta in order to discuss the temporal evolution of the sources of sediments in this region. The detrital zircon spectra of these samples, characterized by two main populations with mean ages of 630–610 Ma and 2170–2060 Ma, are typical of Cambrian–Devonian rocks from the Moroccan Variscides and confirm their link to the West African craton. A minor Stenian–Tonian population (peak at ca. 970 Ma) suggests the influence of a distant and intermittent NE African source (Sahara metacraton), which was probably interrupted after Ordovician time. Our data support previous interpretations of the Moroccan Meseta (and the entire northern Moroccan Variscides) as part of the northern Gondwana passive margin. The main sources of these sediments would have been the West African craton in the western regions of the passive margin (Moroc- can Meseta and central European Paleozoic massifs), and the Arabian-Nubian Shield and/or Sahara metacraton in the eastern areas (Libya, Egypt, Jordan, central and NW Iberian zones during Paleozoic time), where the 1.0 Ga detrital zircon population is persistent throughout the Ordovician–Devonian time span.


1998 ◽  
Vol 35 (3) ◽  
pp. 269-279 ◽  
Author(s):  
G E Gehrels ◽  
P A Kapp

U-Pb ages have been determined for 55 detrital zircon grains from a metasedimentary sequence along the west flank of the Coast Mountains in southeastern Alaska. These rocks belong to the Port Houghton assemblage, which consists of upper Paleozoic pelitic and psammitic schist, metaconglomerate, metabasalt, and marble. The Port Houghton assemblage rests unconformably(?) on metamorphosed and deformed mid-Paleozoic arc-type volcanics (Endicott Arm assemblage), which gradationally overlie upper Proterozoic(?) - lower Paleozoic continental margin strata (Tracy Arm assemblage). Three main clusters of ages are present: 330-365 Ma (19 grains), 1710-2000 Ma (27 grains), and 2450-2680 Ma (6 grains). Additional grains are approximately 2334, 2364, and 3324 Ma. Comparison of these ages with detrital zircon ages in other Cordilleran assemblages supports previous interpretations that metasedimentary rocks in the Coast Mountains (i) form a southwestern continuation of the Yukon-Tanana terrane of eastern Alaska and Yukon, (ii) are not correlative with strata of the Alexander terrane, and (iii) contain detritus that was probably shed from cratonal rocks in the Canadian Shield to the east. Several scenarios exist to explain the occurrence of these continental margin rocks west (outboard) of arc-type and ocean-floor assemblages such as the Stikine, Cache Creek, Quesnel, and Slide Mountain terranes.


Geosphere ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1125-1152 ◽  
Author(s):  
Cooper R. Fasulo ◽  
Kenneth D. Ridgway ◽  
Jeffrey M. Trop

Abstract The Jurassic–Cretaceous Nutzotin, Wrangell Mountains, and Wellesly basins provide an archive of subduction and collisional processes along the southern Alaska convergent margin. This study presents U-Pb ages from each of the three basins, and Hf isotope compositions of detrital zircons from the Nutzotin and Wellesly basins. U-Pb detrital zircon ages from the Upper Jurassic–Lower Cretaceous Nutzotin Mountains sequence in the Nutzotin basin have unimodal populations between 155 and 133 Ma and primarily juvenile Hf isotope compositions. Detrital zircon ages from the Wrangell Mountains basin document unimodal peak ages between 159 and 152 Ma in Upper Jurassic–Lower Cretaceous strata and multimodal peak ages between 196 and 76 Ma for Upper Cretaceous strata. Detrital zircon ages from the Wellesly basin display multimodal peak ages between 216 and 124 Ma and juvenile to evolved Hf compositions. Detrital zircon data from the Wellesly basin are inconsistent with a previous interpretation that suggested the Wellesly and Nutzotin basins are proximal-to-distal equivalents. Our results suggest that Wellesly basin strata are more akin to the Kahiltna basin, which requires that these basins may have been offset ∼380 km along the Denali fault. Our findings from the Wrangell Mountains and Nutzotin basins are consistent with previous stratigraphic interpretations that suggest the two basins formed as a connected retroarc basin system. Integration of our data with previously published data documents a strong provenance and temporal link between depocenters along the southern Alaska convergent margin. Results of our study also have implications for the ongoing discussion concerning the polarity of subduction along the Mesozoic margin of western North America.


2011 ◽  
Vol 48 (2) ◽  
pp. 515-541 ◽  
Author(s):  
Yvon Lemieux ◽  
Thomas Hadlari ◽  
Antonio Simonetti

U–Pb ages have been determined on detrital zircons from the Upper Devonian Imperial Formation and Upper Devonian – Lower Carboniferous Tuttle Formation of the northern Canadian Cordilleran miogeocline using laser ablation – multicollector – inductively coupled plasma – mass spectrometry. The results provide insights into mid-Paleozoic sediment dispersal in, and paleogeography of, the northern Canadian Cordillera. The Imperial Formation yielded a wide range of detrital zircon dates; one sample yielded dominant peaks at 1130, 1660, and 1860 Ma, with smaller mid-Paleozoic (∼430 Ma), Neoproterozoic, and Archean populations. The easternmost Imperial Formation sample yielded predominantly late Neoproterozoic – Cambrian zircons between 500 and 700 Ma, with lesser Mesoproterozoic and older populations. The age spectra suggest that the samples were largely derived from an extensive region of northwestern Laurentia, including the Canadian Shield, igneous and sedimentary provinces of Canada’s Arctic Islands, and possibly the northern Yukon. The presence of late Neoproterozoic – Cambrian zircon, absent from the Laurentian magmatic record, indicate that a number of grains were likely derived from an exotic source region, possibly including Baltica, Siberia, or Arctic Alaska – Chukotka. In contrast, zircon grains from the Tuttle Formation show a well-defined middle Paleoproterozoic population with dominant relative probability peaks between 1850 and 1950 Ma. Additional populations in the Tuttle Formation are mid-Paleozoic (∼430 Ma), Mesoproterozoic (1000–1600 Ma), and earlier Paleoproterozoic and Archean ages (>2000 Ma). These data lend support to the hypothesis that the influx of sediments of northerly derivation that supplied the northern miogeocline in Late Devonian time underwent an abrupt shift to a source of predominantly Laurentian affinity by the Mississippian.


1998 ◽  
Vol 35 (12) ◽  
pp. 1380-1401 ◽  
Author(s):  
George E Gehrels ◽  
Gerald M Ross

U-Pb ages have been determined on 250 detrital zircon grains from Neoproterozoic through Permian miogeoclinal strata in British Columbia and Alberta. Most of the grains in these strata are >1.75 Ga and are interpreted to have been derived from nearby basement provinces (although most grains were probably cycled though one or more sedimentary units prior to final deposition). Important exceptions are Ordovician sandstones that contain grains derived from the Peace River arch, and upper Paleozoic strata with detrital zircons derived from the Franklinian orogen, Salmon River arch (northwestern U.S.A.), and (or) Grenville orogen. These provenance changes resulted in average detrital zircon ages that become progressively younger with time, and may also be reflected by previously reported shifts in the Nd isotopic signature of miogeoclinal strata. In addition to the grains that have identifiable sources, grains of ~1030, ~1053, 1750-1774, and 2344-2464 Ma are common in our samples, but igneous rocks of these ages have not been recognized in the western Canadian Shield. We speculate that unrecognized plutons of these ages may be present beneath strata of the western Canada sedimentary basin. Collectively, our data provide a record of the ages of detrital zircons that accumulated along the Canadian Cordilleran margin during much of Paleozoic time. Comparisons between this reference and the ages of detrital zircons in strata of potentially displaced outboard terranes may help reconstruct the paleogeography and accretionary history of the Cordilleran orogen.


2021 ◽  
Author(s):  
Qian Wang ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao

<p>The Chinese North Tianshan (CNTS) extends E-W along the southern part of the Central Asian Orogenic Belt and has undergone complicated accretion-collision processes in the Paleozoic. This study attempts to clarify the late Paleozoic tectonism in the region by investigating the provenance of the Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS by U-Pb dating and Lu-Hf isotopic analyses of detrital zircons. Detrital zircon U-Pb ages (N=519) from seven samples range from 261 ± 4 Ma to 2827 ± 32 Ma, with the most prominent age peak at 313 Ma. There are Precambrian detrital zircon ages (~7%) ranged from 694 to 1024 Ma. The youngest age components in each sample yielded weighted mean ages ranging from 272 ± 9 Ma to 288 ± 5 Ma, representing the maximum depositional ages. These and literature data indicate that some previously-assumed “Carboniferous” strata in the Bogda area were deposited in the Early Permian, including the Qijiaojing, Julideneng, Shaleisaierke, Yangbulake, Shamaershayi, Liushugou, Qijiagou, and Aoertu formations. The low maturity of the sandstones, zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East ­Junggar Arc and the Harlik-Dananhu Arc in the CNTS. The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc. Zircon ɛ<sub>Hf</sub>(t) values have increased since ~408 Ma, probably reflecting a tectonic transition from regional compression to extension. This event might correspond to the opening of the Bogda intra-arc/back arc rift basin, possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean. A decrease of zircon ɛ<sub>Hf</sub>(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision, which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. This research was financially supported by the Youth Program of Shaanxi Natural Science Foundation (2020JQ-589), the NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).</p>


2018 ◽  
Vol 45 (3) ◽  
pp. 301 ◽  
Author(s):  
Francisco Hervé ◽  
Mauricio Calderón ◽  
Mark Fanning ◽  
Robert Pankhurst ◽  
Carlos W. Rapela ◽  
...  

Previous work has shown that Devonian magmatism in the southern Andes occurred in two contemporaneous belts: one emplaced in the continental crust of the North Patagonian Massif and the other in an oceanic island arc terrane to the west, Chaitenia, which was later accreted to Patagonia. The country rocks of the plutonic rocks consist of metasedimentary complexes which crop out sporadically in the Andes on both sides of the Argentina-Chile border, and additionally of pillow metabasalts for Chaitenia. Detrital zircon SHRIMP U-Pb age determinations in 13 samples of these rocks indicate maximum possible depositional ages from ca. 370 to 900 Ma, and the case is argued for mostly Devonian sedimentation as for the fossiliferous Buill slates. Ordovician, Cambrian-late Neoproterozoic and “Grenville-age” provenance is seen throughout, except for the most westerly outcrops where Devonian detrital zircons predominate. Besides a difference in the Precambrian zircon grains, 76% versus 25% respectively, there is no systematic variation in provenance from the Patagonian foreland to Chaitenia, so that the island arc terrane must have been proximal to the continent: its deeper crust is not exposed but several outcrops of ultramafic rocks are known. Zircons with devonian metamorphic rims in rocks from the North Patagonian Massif have no counterpart in the low metamorphic grade Chilean rocks. These Paleozoic metasedimentary rocks were also intruded by Pennsylvanian and Jurassic granitoids.


Sign in / Sign up

Export Citation Format

Share Document