Paleomagnetic survey of the Goulburn Supergroup, Kilohigok Basin, Nunavut, Canada: Toward an understanding of the Orosirian apparent polar wander path of the Slave craton

2022 ◽  
Vol 369 ◽  
pp. 106516
Author(s):  
Zheng Gong ◽  
David A.D. Evans
2012 ◽  
Vol 49 (2) ◽  
pp. 435-454 ◽  
Author(s):  
Kenneth L. Buchan ◽  
Anthony N. LeCheminant ◽  
Otto van Breemen

The NE-trending Malley dyke swarm, dated herein at 2231 ± 2 Ma (U–Pb baddeleyite), extends from the central Slave craton to the vicinity of the Kilohigok basin, and may continue farther to the northeast as the geochemically similar Brichta dyke swarm, having been offset sinistrally along the prominent Bathurst fault. It carries a characteristic high unblocking temperature paleomagnetic component of single polarity directed up SE (mean direction: D = 138.3°, I = –53.8°), with corresponding paleopole at 50.8°S, 50.0°W. Lower unblocking temperature components, in some cases directed down SE, similar to ca 1.75 Ga post-Hudsonian overprints, are easily removed using combined alternating field (AF) thermal demagnetization, but difficult to remove using AF cleaning alone. The characteristic remanence has not been demonstrated primary, but is significantly older than 2.03 Ga, the age of Lac de Gras dykes, based on a baked contact test at a Lac de Gras – Malley dyke intersection. In addition, an E- to ESE-trending dyke carries a down WNW remanence, typical of 2.19 Ga Dogrib dykes near Yellowknife, suggesting that regional overprinting has not affected the study area since Dogrib emplacement, and that the Malley remanence was acquired at or shortly after Malley emplacement. Comparing Malley and Lac de Gras paleopoles with the 2.22–2.00 Ga Superior craton apparent polar wander path indicates that the two cratons were (i) not in their present relative orientation at 2.23 or 2.03 Ga, and (ii) likely not drifting in close proximity to one another as parts of a single (super)continent throughout the 2.23–2.03 Ga interval.


1989 ◽  
Vol 26 (2) ◽  
pp. 296-304 ◽  
Author(s):  
Julie E. Gales ◽  
Ben A. van der Pluijm ◽  
Rob Van der Voo

Paleomagnetic sampling of the Lawrenceton Formation of the Silurian Botwood Group in northeastern Newfoundland was combined with detailed structural mapping of the area in order to determine the deformation history and make adequate structural corrections to the paleomagnetic data.Structural analysis indicates that the Lawrenceton Formation experienced at least two folding events: (i) a regional northeast–southwest-trending, Siluro-Devonian folding episode that produced a well-developed axial-plane cleavage; and (ii) an episode of local north-trending folding. Bedding – regional cleavage relationships indicate that the latter event is older than the regional folding.Thermal demagnetization of the Lawrenceton Formation yielded univectorial southerly and shallow directions (in situ). A fold test on an early mesoscale fold indicates that the magnetization of the Botwood postdates this folding event. However, our results, combined with an earlier paleomagnetic study of nearby Lawrenceton Formation rocks, demonstrate that the magnetization predates the regional folding. Therefore, we conclude that the magnetization occurred subsequent to the local folding but prior to the period of regional folding.While a tectonic origin for local folding cannot be entirely excluded, the subaerial nature of these volcanics, the isolated occurrence of these folds, and the absence of similar north-trending folds in other areas of eastern Notre Dame Bay suggest a syndepositional origin. Consequently, the magnetization may be nearly primary. Our study yields a characteristic direction of D = 175°, I = +43°, with a paleopole (16°N, 131 °E) that plots near the mid-Silurian track of the North American apparent polar wander path. This result is consistent with an early origin for the magnetization and supports the notion that the Central Mobile Belt of Newfoundland was adjacent to the North American craton, in its present-day position, since the Silurian.


1985 ◽  
Vol 22 (4) ◽  
pp. 553-566 ◽  
Author(s):  
K. L. Buchan ◽  
W. R. A. Baragar

The komatiitic basalts of the Ottawa Islands in eastern Hudson Bay are on strike with and believed to form a continuation of similar units of the Cape Smith Belt 150 km to the northeast. Units sampled in the Ottawa Islands all dip gently to the west and hence are not suitable for an internal fold test of their age of magnetization. However, before correcting for the tilt of the lavas, the dominant magnetization direction (D = 207.6°, I = 61.9°, k = 168, α95 = 3.7°) does not differ significantly from the uncorrected magnetization direction reported from the steeply dipping, northwest-facing units at Cape Smith (D = 218°, I = 60°, k = 47, α95 = 4°). This negative fold test suggests that the remanence at both locations was acquired after folding. Comparison with the North American Precambrian apparent polar wander path implies that overprinting is related to the Hudsonian Orogeny.A second stable magnetization directed to the west with a shallow inclination is superimposed on the dominant component at a number of sampling sites. Its direction is poorly defined and no fold test is possible. However, magnetic evidence suggests that this component was probably acquired as an overprint after the dominant magnetization, perhaps during a mild reheating associated with the Elsonian Orogeny.


1979 ◽  
Vol 16 (5) ◽  
pp. 1060-1070 ◽  
Author(s):  
J. A. Hanes ◽  
Derek York

40Ar/39Ar step-heating analyses were performed on 11 felsic and mafic mineral separates from a 90 m wide Precambrian diabase dike of the Abitibi swarm in the Superior Province of the Canadian Shield. Deuterically altered minerals from the dike interior define a primary age of 2150 ± 25 Ma. Updated ages, obtained from felsic separates within 30, and mafic within 1.5 m of the dike border, are evidence of a previously undetected 'Hudsonian' (1.7–1.8 Ga) hydrothermal event in the area. It is possible to distinguish the deuteric from the later hydrothermal alteration by both dating and petrographic methods. The data from this study demonstrate the successful application of 40Ar/39Ar dating to early Proterozoic dikes which have suffered low grade metamorphism. The ages support a north to south sense of motion of the Track 5 apparent polar wander path (APWP). A monotonic decrease in apparent age of felsic spectra indicates reactor induced recoil effects which are correlated with the fine-grained saussurite in the feldspar.


The palaeomagnetic record of continental drift during the Proterozoic is reasonably complete for North America (including Greenland and the Baltic Shield), less complete for Africa and Australia, and fragmentary elsewhere. Palaeomagnetic poles of similar age from different cratons or structural provinces of any one continent tend to fall on a common apparent polar wander path (a.p.w.p.), indicating no major (> 1000 km) intercratonic movements. On this evidence, Proterozoic orogens and mobile belts are essentially ensialic in origin. However, the palaeomagnetic record has systematic gaps. In highly metamorphosed orogens (amphibolite grade and above), remagnetization dating from post-orogenic uplift and cooling is pervasive. Collisional and ensialic orogenesis cannot then be distinguished. Palaeopoles from different continents do not follow a common a.p.w.p. They record large relative rotations and palaeolatitude shifts. A recurrent pattern appears in the late Proterozoic drift of North America. At approximately 200 Ma intervals (at about 1250, 1050, 850 and 600 Ma B.P .), the continent returned to the same orientation and (equatorial) latitudes from various rotations and high-latitude excursions. Lacking detailed a.p.w.ps. from other continents, it is not possible to say if these motions represent Wilson cycles of ocean opening and closing in the Phanerozoic style, but they do require minimum drift rates of 50—60 mm/a, comparable to the most rapid present-day plate velocities.


Sign in / Sign up

Export Citation Format

Share Document