The Importance of Amine-degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A review

2020 ◽  
Vol 99 ◽  
pp. 331-339
Author(s):  
Binbin Li ◽  
Shiling Lu
Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Federica Barbieri ◽  
Chiara Montanari ◽  
Fausto Gardini ◽  
Giulia Tabanelli

Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2572
Author(s):  
Xinxiu Ma ◽  
Jingran Bi ◽  
Xinyu Li ◽  
Gongliang Zhang ◽  
Hongshun Hao ◽  
...  

In this study, high-throughput sequencing and culture-dependent and HPLC methods were used to investigate the contribution and regulation of biogenic amines (BAs) by dominant microorganisms during fish sauce fermentation. The results showed that the microbial composition constantly changed with the fermentation of fish sauce. Tetragenococcus (40.65%), Lentibacillus (9.23%), Vagococcus (2.20%), Psychrobacter (1.80%), Pseudomonas (0.98%), Halomonas (0.94%) and Staphylococcus (0.16%) were the dominant microflora in fish sauce. The content of BAs gradually increased as the fermentation progressed. After 12 months of fermentation, the histamine content (55.59 mg/kg) exceeded the toxic dose recommended by the Food and Drug Administration (FDA). Correlation analysis showed that dominant microorganisms have a great contribution to the accumulation of BAs. By analyzing the BA production capacity of dominant isolates, the accumulation of BAs in fish sauce might be promoted by Tetragenococcus and Halomonas. Moreover, four strains with high BA reduction ability were screened out of 44 low BA-producing dominant strains, and their influence on BA accumulation in fermented foods was determined. Results demonstrated that Staphylococcus nepalensis 5-5 and Staphylococcus xylosus JCM 2418 might be the potential starters for BA control. The present study provided a new idea for the control of BAs in fermented foods.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1395
Author(s):  
Sònia Sánchez-Pérez ◽  
Oriol Comas-Basté ◽  
M. Teresa Veciana-Nogués ◽  
M. Luz Latorre-Moratalla ◽  
M. Carmen Vidal-Carou

A low-histamine diet is currently the most advised strategy to prevent the symptomatology of histamine intolerance. Conceptually, these diets should be founded on the exclusion of histamine-containing foods, although a certain disparity is found within the list of excluded foods in accordance with the different low-histamine diets available in the literature. This study aimed to critically review low-histamine diets reported in the scientific literature, according to the histamine and other biogenic amine contents of the excluded foods. A total of ten scientific studies that provided specific recommendations on the foods that must be avoided within the framework of a low-histamine diet were found. Overall, the comparative review brought out the great heterogenicity in the type of foods that are advised against for histamine intolerant individuals. Excluded foods were, in most cases, different depending on the considered diet. Only fermented foods were unanimously excluded. The exclusion of 32% of foods could be explained by the occurrence of high contents of histamine. The presence of putrescine, which may interfere with histamine degradation by the DAO enzyme at the intestinal level, could partly explain the reason why certain foods (i.e., citrus fruits and bananas) were also frequently reported in low-histamine diets. Finally, there was a range of excluded foods with an absence or very low levels of biogenic amines. In this case, certain foods have been tagged as histamine-liberators, although the mechanism responsible has not yet been elucidated.


2017 ◽  
Vol 45 (2) ◽  
pp. 143-148
Author(s):  
Sojeong Heo ◽  
Keuncheol Jeong ◽  
Hyundong Lee ◽  
Do-Won Jeong ◽  
Jong-Hoon Lee

2020 ◽  
Vol 5 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Fatih Ozcelik ◽  
Muhammed Cihan Temel ◽  
İlbey Kayra Ozcelik ◽  
Ebru Kale

Biogenic amines, which are responsible for the realization of many physiological conditions of our body, are compounds that can be produced by microorganisms especially in fermented foods with high protein content. They can have harmful effects on human health only when taken in high amounts with food. However, in individuals with impaired anti-toxic metabolism, which is responsible for detoxification, even lower amounts may cause toxic effects. The most common health effects are nausea, vomiting, severe headaches, hypotension, hypertension, tachycardia, various allergic reactions, abdominal pain and death in more severe cases. For these reasons, legislations on biogenic amines in foods have been established with some restrictions. Food producers have been asked to comply with these legislations. However, despite all precautions, biogenic amines in foods have not been completely removed. Further research is still needed to find effective solutions to prevent biogenic amine formation. In addition, consumers need to be made aware of this issue.


Sign in / Sign up

Export Citation Format

Share Document