Effects of temperature perturbation on direct detonation initiation

2017 ◽  
Vol 36 (2) ◽  
pp. 2743-2751 ◽  
Author(s):  
Chengken Qi ◽  
Zheng Chen
2017 ◽  
Author(s):  
Sara A. Haddad ◽  
Eve Marder

SUMMARYIn the ocean, the crab, Cancer borealis, is subject to daily and seasonal temperature changes. Previous work, done in the presence of descending modulatory inputs, had shown that the pyloric rhythm of the crab increases in frequency as temperature increases, but maintains its characteristic phase relationships until it “crashes” at extreme high temperatures. To study the interaction between neuromodulators and temperature perturbations, we studied the effects of temperature on preparations from which the descending modulatory inputs were removed. Under these conditions the pyloric rhythm was destabilized. We then studied the effects of temperature on preparations in the presence of oxotremorine, proctolin, and serotonin. Oxotremorine and proctolin enhanced the robustness of the pyloric rhythm, while serotonin made the rhythm less robust. These experiments reveal considerable animal-to-animal diversity in their crash stability, consistent with the interpretation that cryptic differences in many cell and network parameters are revealed by extreme perturbations.


1994 ◽  
Vol 30 (12) ◽  
pp. 153-159 ◽  
Author(s):  
I. A. Watson-Craik ◽  
A. G. James ◽  
E. Senior

A three-stage continuous culture system was used to segregate the component physiological groups of an anaerobic cellobiose-degrading association enriched and isolated from a landfill site. The optimum temperatures for methanogenesis were 30-35°C, although differences apparent in Vessels B and C at lower temperatures suggested the presence of distinct populations in the two vessels. There was no evidence of thermophilic methanogenic activity. Sulphate-reducing bacterial (SRB) activity was less affected by temperature perturbation, and there was significant SRB activity at 55°C.


2014 ◽  
Vol 514 ◽  
pp. 217-229 ◽  
Author(s):  
HY Wang ◽  
LW Botsford ◽  
JW White ◽  
MJ Fogarty ◽  
F Juanes ◽  
...  

2020 ◽  
Vol 639 ◽  
pp. 185-197 ◽  
Author(s):  
MJ Malick ◽  
ME Hunsicker ◽  
MA Haltuch ◽  
SL Parker-Stetter ◽  
AM Berger ◽  
...  

Environmental conditions can have spatially complex effects on the dynamics of marine fish stocks that change across life-history stages. Yet the potential for non-stationary environmental effects across multiple dimensions, e.g. space and ontogeny, are rarely considered. In this study, we examined the evidence for spatial and ontogenetic non-stationary temperature effects on Pacific hake Merluccius productus biomass along the west coast of North America. Specifically, we used Bayesian additive models to estimate the effects of temperature on Pacific hake biomass distribution and whether the effects change across space or life-history stage. We found latitudinal differences in the effects of temperature on mature Pacific hake distribution (i.e. age 3 and older); warmer than average subsurface temperatures were associated with higher biomass north of Vancouver Island, but lower biomass offshore of Washington and southern Vancouver Island. In contrast, immature Pacific hake distribution (i.e. age 2) was better explained by a nonlinear temperature effect; cooler than average temperatures were associated with higher biomass coastwide. Together, our results suggest that Pacific hake distribution is driven by interactions between age composition and environmental conditions and highlight the importance of accounting for varying environmental effects across multiple dimensions.


MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3389-3395
Author(s):  
R. González-Díaz ◽  
D. Fernández-Sánchez ◽  
P. Rosendo-Francisco ◽  
G. Sánchez-Legorreta

AbstractIn this work, the first results of the effects of temperature during the production of Se2- ions and the effect during the interaction of Cd2+ and Se2- ions in the synthesis process of CdSe nanoparticles are presented. The synthesis of CdSe was carried out by the colloidal technique, in the first one we used a temperature of 63 °C to produce Se2- ions and in the second one an interaction temperature of 49 °C. The samples were characterized using a Scanning Electron Microscope (SEM) and a Scanning Tunneling Microscope (STM). From the SEM micrographs it was possible to identify the thorns formation and irregular islands. STM micrographs reveal elliptical shapes with a regular electron cloud profile.


Sign in / Sign up

Export Citation Format

Share Document