Lagrangian tracking of soot particles in LES of gas turbines

2019 ◽  
Vol 37 (4) ◽  
pp. 5429-5436 ◽  
Author(s):  
Lucien Gallen ◽  
Anne Felden ◽  
Eleonore Riber ◽  
Bénédicte Cuenot
2020 ◽  
Vol 4 ◽  
pp. 253-263
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Alessandro Vulpio ◽  
Craig Appleby ◽  
...  

The increment of the industrialization processes led to even more release of carbonaceous particulate into the environment. These airborne contaminants are produced by endothermic machines, coal combustion, heating systems, and production plants. Soot particles suspended into the air can overpass the inlet filters (if present) of gas turbines and deposit onto the internal parts of the compressor. This phenomenon, leading to the modification of the aerodynamic surface of the airfoils, is the main responsible for the gas turbine performance losses over time. This detrimental effect can be partially recovered by washing the compressor unit, frequently. In this work, the assessment of the washing effectiveness against soot deposits of an on-purpose designed eco-friendly cleaner is provided. The removal effectiveness of this water-based cleaner is related to the capability to collect soot particles from surfaces, limiting redeposit phenomena over the stages. The experimental investigation has been carried out by injecting soot particles, under controlled conditions, into a multistage test axial compressor. Using image post-processing techniques, carried out over the entire compressor flow path, a quantitative evaluation of the washing capability has been assessed. Compared with demineralized water, the cleaner was found to be effective if high cleaning performances are expected.


Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Luca di Mare ◽  
Francesco Montomoli

Fouling is a major problem in gas turbines for aero-propulsion. The aerodynamics and heat load of the blades are severely affected by this phenomenon with local geometrical variations due to deposition and erosion. Currently two major models are available in literature for the evaluation of fouling effects in CFD: the first one is based on a critical threshold for the viscosity, whereas the second is characterized by the normal velocity to the surface. Both models aim to define a likelihood coefficient which estimates the probability a particle has to stick to a surface, known as sticking coefficient. However current models lack of generality being application specific. This work presents an innovative model for the estimation of the sticking probability. The fouling effect is defined as function of particle velocity, temperature and size through an energy based approach. Expressing the energy involved in the impact through an Arrhenius’ type equation a general formulation for the sticking coefficient is obtained. The method, named EBFOG (Energy Based FOulinG), is the first “energy” based model presented in the open literature that can account any common deposition effect in gas turbines. The EBFOG model is implemented into a Lagrangian tracking procedure, coupled to a full three-dimensional CFD solver. Particles are tracked inside the domain and the velocity, size and temperature of each ones are calculated. The local geometry of the blade is modified accordingly to the deposition rate, the mesh is modified and the CFD solver updates the flow field. The application of this model to particle deposition in high pressure turbine vanes is investigated showing the flexibility of the proposed methodology. Such model is particular important in aircraft engines where the effect of fouling for the turbine, in particular the reduction of the HP nozzle throat area, influences heavily the performance: the energy based approach is thus used to quantify the area modification and estimate the variation of the compressor performance. The compressor map as a function of the operating hours in a severe environment can be in this way predicted to estimate, for example, the time that an engine can fly in a cloud of volcanic ashes. For this reason the impact of the fouling on the throat area of the nozzle is quantified for different conditions.


1969 ◽  
Vol 48 (10) ◽  
pp. 454
Author(s):  
H.E. Gresham ◽  
Eric Mensforth ◽  
L.R. Beesley ◽  
D. Wilkinson ◽  
R.E. Mills ◽  
...  

Author(s):  
A.A. Khalatov ◽  
◽  
I.N. Karp ◽  
Yu.G. Kutsan ◽  
◽  
...  

1997 ◽  
Author(s):  
K. McManus ◽  
M. Allen ◽  
W. Rawlins ◽  
K. McManus ◽  
M. Allen ◽  
...  

Author(s):  
QI CHEN ◽  
◽  
JINTAO SUN ◽  
JIANYU LIU ◽  
BAOMING ZHAO ◽  
...  

Plasma-assisted ignition and combustion, widely applied in gas turbines, scramjets, and internal combustion engines, has been considered as a promising technique in shortening ignition delay time, improving combustion energy efficiency, and reducing emission. Nonequilibrium plasma can excite the gas molecules to higher energy states, directly dissociate or ionize the molecules and, thereby, has the potential to produce reactive species at residence time and location in a combustible mixture and then to efficiently accelerate the overall pyrolysis, oxidation, and ignition. Previous studies have demonstrated the effectiveness of plasma-assisted combustion by using direct current, alternating currant, microwave, radio frequency, and pulsed nanosecond discharge (NSD). Due to the complicated interaction between plasma and combustion in different types of plasma, detailed plasma-combustion chemistry is still not well understood.


Sign in / Sign up

Export Citation Format

Share Document