scholarly journals ASSESSMENT OF THE WASHING EFFECTIVENESS OF ON-PURPOSE DESIGNED ECO-FRIENDLY CLEANER AGAINST SOOT DEPOSITS

2020 ◽  
Vol 4 ◽  
pp. 253-263
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Alessandro Vulpio ◽  
Craig Appleby ◽  
...  

The increment of the industrialization processes led to even more release of carbonaceous particulate into the environment. These airborne contaminants are produced by endothermic machines, coal combustion, heating systems, and production plants. Soot particles suspended into the air can overpass the inlet filters (if present) of gas turbines and deposit onto the internal parts of the compressor. This phenomenon, leading to the modification of the aerodynamic surface of the airfoils, is the main responsible for the gas turbine performance losses over time. This detrimental effect can be partially recovered by washing the compressor unit, frequently. In this work, the assessment of the washing effectiveness against soot deposits of an on-purpose designed eco-friendly cleaner is provided. The removal effectiveness of this water-based cleaner is related to the capability to collect soot particles from surfaces, limiting redeposit phenomena over the stages. The experimental investigation has been carried out by injecting soot particles, under controlled conditions, into a multistage test axial compressor. Using image post-processing techniques, carried out over the entire compressor flow path, a quantitative evaluation of the washing capability has been assessed. Compared with demineralized water, the cleaner was found to be effective if high cleaning performances are expected.

Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


2015 ◽  
Vol 787 ◽  
pp. 513-517 ◽  
Author(s):  
R. Pachaiyappan ◽  
R. Gopinath ◽  
S. Gopalakannan

Silicon carbides is a composite ceramic material produced from inorganic non-metallic substances, formed from the molten mass which solidifies on cooling and simultaneously matured by the action of heat. It is used in various applications such as grinding wheels, filtration of gases and water, absorption, catalyst supports, concentrated solar powers, thermoelectric conversion etc. The modern usage of silicon carbide is fabricated as a heat exchanger for high temperature applications. Leaving behind steel and aluminium, silicon carbide has an excellent temperature withstanding capability of 1425°C. It is resistant to corrosion and chemical erosion. Modern fusion reactors, Stirling cycle based gas turbines, evaporators in evaporative cooling system for air condition and generator in LiBr/H2O absorption chillers for air conditioning those systems heat transfer rate can be improved by replacing a present heat exchanger with silicon carbide heat exchanger. This review presents a detailed discussion about processing technique of such a silicon carbide. Modern known processing techniques are partial sintering, direct foaming, replica, sacrificial template and bonding techniques. The full potential of these materials can be achieved when properties are directed over specified application. While eyeing over full potential it is highly dependent on processing techniques.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Devid Dainese ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the micro-particles not captured by the air filtration system can cause deposits on blades and, consequently, can result in a decrease in compressor performance. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. However, this information often refers to single stage analysis. This paper presents three-dimensional numerical simulations of the micro-particle ingestion (0.15 μm – 1.50 μm) in a multistage (i.e. eight stage) subsonic axial compressor, carried out by means of a commercial CFD code. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The effects of humidity, or more generally, the effects of a third substance at the particle/surface interface (which is considered one of the major promoters of fouling) is then studied. The behavior of wet and oiled particles, in addition to the usual dry particles, is taken into consideration. In the dry case, the particle deposition is established only by using the sticking probability. This quantity links the kinematic characteristics of particle impact on the blade with the fouling phenomenon. In the other two cases, the effect of the presence of a third substance at the particle/surface interface is considered by means of an energy-based model. Moreover, the influence of the tangential impact velocity on particle deposition is analyzed. Introducing the effect of a third substance, such as humidity or oil, the phenomenon of fouling concerns the same areas of the multistage compressor. The most significant results are obtained by combining the effect of the third substance with the effect of the tangential component of the impact velocity of the particles. The deposition trends obtained with these conditions are comparable with those reported in literature, highlighting how the deposits are mainly concentrated in the early stages of a multistage compressor. Particular fluid dynamic phenomena, such as corner separations and clearance vortices, strongly influence the location of particle deposits.


Author(s):  
J. D. MacLeod ◽  
W. Grabe

The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeters. Results indicate that the agreement between Coriolis and turbine type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturers specification. Even a significant variation in fuel density (10%), and viscosity (300%), did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.


Author(s):  
Xueyou Wen ◽  
Jiguo Zou ◽  
Zheng Fu ◽  
Shikang Yu ◽  
Lingbo Li

Steam-injected gas turbines have a multitude of advantages, but they suffer from the inability to recover precious demineralized water. The present paper describes the test conditions and results of steam injection along with an attempt to achieve water recovery, which were obtained through a series of tests conducted on a S1A-02 small-sized industrial gas turbine. A water recovery device incorporating a compact finned spiral plate cooling condenser equipped with filter screens has been designed for the said gas turbine and a 100% water recovery (based on the design point) was attained.


2019 ◽  
Vol 37 (4) ◽  
pp. 5429-5436 ◽  
Author(s):  
Lucien Gallen ◽  
Anne Felden ◽  
Eleonore Riber ◽  
Bénédicte Cuenot

Author(s):  
Vasco Mezzedimi ◽  
Pierluigi Nava ◽  
Dave Hamilla

The full mapping of a new gas turbine axial compressor at different speeds, IGV settings and pressure ratios (from choking to surge) has been performed utilizing a complete gas turbine with a suitable set of modifications. The main additions and modifications, necessary to transform the turbine into the Compressor Test Vehicle (CTV), are: - Compressor inlet throttling valve addition - Compressor discharge bleed valve addition - Turbine 1st stage nozzle area reduction - Starting engine change (increase in output and speed range). This method has been successfully employed on two different single shaft heavy-duty gas turbines (with a power rating of 11MW and 170 MW respectively). The paper describes the theoretical basis of this testing method and a specific application with the above mentioned 170 MW machine.


Sign in / Sign up

Export Citation Format

Share Document