scholarly journals Framework for an Energy Efficient and Flexible Automation Strategy and Control Optimization Approach of Supply Systems within a Thermally-Linked Factory

Procedia CIRP ◽  
2018 ◽  
Vol 72 ◽  
pp. 526-532 ◽  
Author(s):  
Niklas Panten ◽  
Nina Strobel ◽  
Johannes Sossenheimer ◽  
Eberhard Abele
Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2489 ◽  
Author(s):  
Gonçalo Pina Cipriano ◽  
Lucian Blaga ◽  
Jorge dos Santos ◽  
Pedro Vilaça ◽  
Sergio Amancio-Filho

The present work investigates the correlation between energy efficiency and global mechanical performance of hybrid aluminum alloy AA2024 (polyetherimide joints), produced by force-controlled friction riveting. The combinations of parameters followed a central composite design of experiments. Joint formation was correlated with mechanical performance via a volumetric ratio (0.28–0.66 a.u.), with a proposed improvement yielding higher accuracy. Global mechanical performance and ultimate tensile force varied considerably across the range of parameters (1096–9668 N). An energy efficiency threshold was established at 90 J, until which, energy input displayed good linear correlations with volumetric ratio and mechanical performance (R-sq of 0.87 and 0.86, respectively). Additional energy did not significantly contribute toward increasing mechanical performance. Friction parameters (i.e., force and time) displayed the most significant contributions to mechanical performance (32.0% and 21.4%, respectively), given their effects on heat development. For the investigated ranges, forging parameters did not have a significant contribution. A correlation between friction parameters was established to maximize mechanical response while minimizing energy usage. The knowledge from Parts I and II of this investigation allows the production of friction riveted connections in an energy efficient manner and control optimization approach, introduced for the first time in friction riveting.


Author(s):  
X H Wang ◽  
H T Chen ◽  
X X Zhu ◽  
J L Zhang ◽  
W L Liu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4060
Author(s):  
Artur Kozłowski ◽  
Łukasz Bołoz

This article discusses the work that resulted in the development of two battery-powered self-propelled electric mining machines intended for operation in the conditions of a Polish copper ore mine. Currently, the global mining industry is seeing a growing interest in battery-powered electric machines, which are replacing solutions powered by internal combustion engines. The cooperation of Mine Master, Łukasiewicz Research Network—Institute of Innovative Technologies EMAG and AGH University of Science and Technology allowed carrying out a number of works that resulted in the production of two completely new machines. In order to develop the requirements and assumptions for the designed battery-powered propulsion systems, underground tests of the existing combustion machines were carried out. Based on the results of these tests, power supply systems and control algorithms were developed and verified in a virtual environment. Next, a laboratory test stand for validating power supply systems and control algorithms was developed and constructed. The tests were aimed at checking all possible situations in which the battery gets discharged as a result of the machine’s ride or operation and when it is charged from the mine’s mains or with energy recovered during braking. Simulations of undesirable situations, such as fluctuations in the supply voltage or charging power limitation, were also carried out at the test stand. Positive test results were obtained. Finally, the power supply systems along with control algorithms were implemented and tested in the produced battery-powered machines during operational trials. The power systems and control algorithms are universal enough to be implemented in two different types of machines. Both machines were specially designed to substitute diesel machines in the conditions of a Polish ore mine. They are the lowest underground battery-powered drilling and bolting rigs with onboard chargers. The machines can also be charged by external fast battery chargers.


2018 ◽  
Vol 251 ◽  
pp. 03052 ◽  
Author(s):  
Andrey Benuzh ◽  
Sergey Fedorov ◽  
Ekaterina Orenburova

The article presents special characteristics of mathematical modeling of the process control a resource efficient heat supply system of industrial buildings and facilities, where constant temperature maintenance is especially critical for the process. A functional diagram of the operation of the continuous heat supply process is provided. The dependence of temperature at the point of heat-transfer fluid mixing on environmental is analyzed and control system operation algorithm is proposed.


Sign in / Sign up

Export Citation Format

Share Document