scholarly journals Influence of the thickness of nanolayers in wear-resistant layer of Ti-TiN-(Ti,Cr,Al)N coating on the tool life and wear pattern of the carbide cutting tools in steel turning

Procedia CIRP ◽  
2021 ◽  
Vol 101 ◽  
pp. 262-265
Author(s):  
Alexey Vereschaka ◽  
Marina Volosova ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
Nikolay Andreev ◽  
...  
Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 730 ◽  
Author(s):  
Alexey Vereschaka ◽  
Sergey Grigoriev ◽  
Nikolay Sitnikov ◽  
Anatoliy Aksenenko ◽  
Filipp Milovich ◽  
...  

This article discusses the influence of the thickness of a nano-structured wear-resistant layer of the Ti–TiN–(Ti,Al,Si)N multilayer composite coating on its mechanical and performance properties. The study was focused on the coatings with the following thicknesses of its wear-resistant layers: 2, 3.5, 5, 7, 11, and 15 μm. The relation between the thickness of a wear-resistant layer and the time of its deposition was investigated, and the effect of the above thickness on hardness and wear resistance in scratch testing was considered. Cutting tests were conducted in turning steel C45 with carbide inserts with the coatings under study at various cutting speeds (vc = 250, 300 and 350 m/min). The study found the value of thickness of wear-resistant layer providing the longest tool life at various cutting speeds. The differences in the nature of wear for the coatings with various thicknesses of wear-resistant layers were considered.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 447 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Alexander Metel ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
...  

This paper deals with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating. It has a three-layered architecture with a nano-structured wear-resistant layer. The studies involved the investigation into the microstructure (with the use of SEM and TEM), elemental and phase composition (XRD and SAED patterns), wear process pattern in scratch testing, crystal structure, as well as the microhardness of the coating. Cutting tests of tools with the above coating were carried out in dry turning of steel 1045 at cutting speeds of vc = 200, 250, and 300 m·min−1. The comparison included uncoated tools and tools with the commercial TiN and (Ti,Al)N coatings with the same thickness. The tool with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating showed the longest tool life at all the cutting speeds under consideration. Meanwhile, a tool with the coating under study can be recommended for use in turning constructional steel at the cutting speed of vc = 250 m·min−1. At this cutting speed, a tool shows the combination of a rather long tool life and balanced wear process, without any threat of catastrophic wear.


2020 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Marina Volosova ◽  
Caterina Sotova ◽  
Nikolay Sitnikov ◽  
...  

The chapter deals with the specific features concerning the application of wear-resistant coatings to improve the performance properties of ceramic cutting tools. The paper discusses the theoretical background associated with the specific operation conditions and wear of ceramic cutting tools and influencing the choice of the compositions and structures of wear-resistant coatings. The studies were focused on the application of the Ti-(Ti,Al)N-(Zr,Nb,Ti,Al)N multilayer composite coating with a nanostructured wear-resistant layer, as well as the (Cr,Al,Si)N–(DLC–Si)–DLC–(DLC–Si) and (Cr,Al,Si)N–DLC composite coatings in order to improve the cutting properties of ceramic tools. The chapter presents the results of the comparative cutting tests for the tools with the coatings under study, uncoated tools, and tools with the Ti-(Ti,Al)N commercial coating. The wear mechanisms typical for ceramic cutting tools with coatings of various compositions have been investigated.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Jarosław Mikuła ◽  
Daniel Pakuła ◽  
Ludwina Żukowska ◽  
Klaudiusz Gołombek ◽  
Antonín Kříž

The article includes research results for the functional properties achieved for a wide range of sintered tool materials, including sintered carbides, cermets and three types of Al2O3 oxide tool ceramics ((Al2O3 + ZrO2, Al2O3 + TiC and Al2O3 + SiC(w)) with (Ti,Al)N coating deposited in the cathodic arc evaporation (CAE-PVD) method and comparison with uncoated tool materials. For all coated samples, a uniform wear pattern on tool shank was observed during metallographic analysis. Based on the scanning electron microscope (SEM) metallographic analysis, it was found that the most common types of tribological defects identified in tested materials are: mechanical defects and abrasive wear of the tool side, crater formation on the tool face, cracks on the tool side, chipping on the cutting edge and built-up edge from chip fragments. Deposition of (Ti,Al)N coating on all tested substrates increases the wear resistance and also limits the exceeding of critical levels of permanent stresses. It even increases the tool life many times over. Such a significant increase in tool life results, among other things, from a large increase in microhardness of PVD coated materials compared to uncoated samples, increased resistance to thermal and chemical abrasion, improved chip formation and removal process conditions. Use of hard coatings applied to sintered tool materials is considered to be one of the most important achievements in improving the functional properties of cutting tools and can still be developed by improving the coating structure solutions (sorted and nanocrystalline structures) and extending the range of coating applications (Ti,Al)N in a variety of substrates.


2020 ◽  
Vol 385 ◽  
pp. 125402 ◽  
Author(s):  
Alexey Vereschaka ◽  
Vladimir Tabakov ◽  
Sergey Grigoriev ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
...  
Keyword(s):  

2010 ◽  
Vol 30 (9) ◽  
pp. 910-920 ◽  
Author(s):  
F. V. Kiryukhantsev-Korneev ◽  
N. A. Shirmanov ◽  
A. N. Sheveiko ◽  
E. A. Levashov ◽  
M. I. Petrzhik ◽  
...  

2017 ◽  
Vol 107 (06) ◽  
pp. 453-460
Author(s):  
E. Prof. Uhlmann ◽  
J. Bruckhoff

Angesichts steigender Anforderungen an Zerspanwerkzeuge nimmt die Schneidkantenpräparation einen immer größer werdenden Stellenwert ein, da sich so die Standzeit von Zerspanwerkzeugen erhöhen lässt. Die bisher eingesetzten Präparationsverfahren eignen sich meist nur für einfache Verrundungen an der Schneidkante. In umfangreichen Untersuchungen wurde die Eignung von Formschleifprozessen zur Herstellung definierter Schneidkantenmikrogeometrien anhand von Arbeitsergebnissen analysiert.   Due to increasing demands on cutting tools cutting edge preparation has a high priority because it influences the tool life. Current cutting edge preparation processes can only generate simple roundings on the cutting edge. By extensive investigations the suitability of form grinding processes for the production of defined microgeometries on the cutting edge was analysed.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012015
Author(s):  
M Sh Migranov ◽  
A M Migranov ◽  
S R Shekhtman

Abstract The paper presents the results of a study of one of the ways to increase the wear resistance of “duplex” coatings applied to cutting tools, which are due to preliminary diffusion saturation of the tool surface with nitrogen (known as ion nitriding) followed by physical deposition of a hard coating (Ti, Cr) N. The proposed coating also contains an additional layer with an impurity of ions, deposited on a preliminary nitrided surface of high speed steel before the deposition of a hard coating. Tests were carried out to evaluate the effect of these modified layers on the tool life of the HSS tool. The greatest wear resistance after "triplex" - treatment was achieved during ion implantation of titanium into a pre-nitrided surface. The coefficient of friction of the modified layer was studied at different contact temperatures. Ionic mixing contributes to the appearance of a thin surface layer with an amorphous-like structure, which prolongs the stage of normal wear, which significantly increases the tool life as a result of the self-organization process.


Sign in / Sign up

Export Citation Format

Share Document