scholarly journals Rigid Structure Response Analysis to Seismic and Blast Induced Ground Motions

2011 ◽  
Vol 14 ◽  
pp. 946-955 ◽  
Author(s):  
Hong Hao ◽  
Yun Zhou
2006 ◽  
Vol 22 (2) ◽  
pp. 293-312 ◽  
Author(s):  
Jack W. Baker ◽  
C. Allin Cornell

Analysis of the seismic risk to a structure requires assessment of both the rate of occurrence of future earthquake ground motions (hazard) and the effect of these ground motions on the structure (response). These two pieces are often linked using an intensity measure such as spectral acceleration. However, earth scientists typically use the geometric mean of the spectral accelerations of the two horizontal components of ground motion as the intensity measure for hazard analysis, while structural engineers often use spectral acceleration of a single horizontal component as the intensity measure for response analysis. This inconsistency in definitions is typically not recognized when the two assessments are combined, resulting in unconservative conclusions about the seismic risk to the structure. The source and impact of the problem is examined in this paper, and several potential resolutions are proposed. This discussion is directly applicable to probabilistic analyses, but also has implications for deterministic seismic evaluations.


1987 ◽  
Vol 109 (1) ◽  
pp. 80-87 ◽  
Author(s):  
S. Takada ◽  
K. Tanabe

This paper presents a three-dimensional quasi-static analysis of continuous or jointed pipelines. Transfer Matrix Method was applied to the analysis providing for nonlinear behaviors of joints and soil frictions. An improved computer program ERAUL-II (Earthquake Response Analysis of Underground Lifelines-II) was developed for numerical computations. First, numerical response analyses were carried out for three-dimensional pipe systems with steel or cast iron pipe materials subject to large ground deformations or seismic ground motions. Analytical results show that torsional properties of pipes are also important factors for seismic behavior, which cannot be known by two-dimensional analyses. Second, experimental test data of three-dimensional steel pipe systems were simulated by using the ERAUL-II program. Simulated results agree well with the experimental values.


Author(s):  
Stefan Florin Balan ◽  
Alexandru Tiganescu ◽  
Bogdan Felix Apostol

2013 ◽  
Vol 405-408 ◽  
pp. 1939-1944
Author(s):  
Gui Lan Tao ◽  
Li Zhang

Spring-damper units were set on the boundaries to absorb incident waves and reflected scattering waves to realize viscoelastic artificial boundary (VAB). The equivalent node load input method was used to simulate the VAB and viscoelastic boundary element wave input. Programming is based on APDL secondary development language with ANSYS finite element software. Considering the interaction between chamber structure and the surrounding soil, docking chamber structure dynamic model is established based on the VAB. The linear elastic model was used for concrete structure. The D-P nonlinear model was used for the back soil calculation. Docking chamber structure dynamic analysis under conditions of fixed boundaries and viscoelastic boundaries were conducted. The result indicated that under the viscoelastic boundary conditions, dynamic acceleration response is significant on the top of the lock wall, which is approximately 2.5 times of the value on the bottom of the lock wall. The maximum response stress appears near the cross point of the lock wall and the bottom floor with value of approximately 5620 kPa;.The chamber bottom floor is subjected to tension and maximum stress with the value of approximately 6180 kPa. Usually, the structure response under the fixed boundary conditions is higher than the structure response under the viscoelastic boundary conditions.


Author(s):  
Alexander G. Tyapin

The author carries out parametric studies for the equation of planar vibrations of rigid structure resting on kinematical rolling supports with planar bottom (after A.M. Kurzanov). Both support and the surface below are assumed rigid; no sliding assumed. Varied parameter is the width of the bottom. Horizontal structural acceleration is studied. Three variants of the possible behavior are shown: (i) minor rocking with little decrease in response accelerations as compared to the initial excitation; considerable rocking with considerable decrease in the response accelerations; intensive rocking leading to the overturn of the supports. In vertical direction there appear shocks (infinite accelerations) during gap closings of the supports. The importance of the problem for the seismic response analysis of the unanchored items is noted. The author gives recommendations for the experimental program, aimed to obtain data about damping both for rotation and for the gap closing, and also about the impact of the flexibility of the supports and underlying surface.


2020 ◽  
Vol 36 (2) ◽  
pp. 856-879 ◽  
Author(s):  
Christopher A de la Torre ◽  
Brendon A Bradley ◽  
Robin L Lee

This study examines the performance of nonlinear total stress one-dimensional (1D) wave propagation site response analysis for modeling site effects in physics-based ground motion simulations of the 2010–2011 Canterbury, New Zealand earthquake sequence. This approach explicitly models three-dimensional (3D) ground motion phenomena at the regional scale, and detailed site effects at the local scale. The approach is compared with a more commonly used empirical VS30-based method of computing site amplification for simulated ground motions, as well as prediction via an empirical ground motion model. Site-specific ground response analysis is performed at 20 strong motion stations in Christchurch for 11 earthquakes with 4.7≤ MW≤7.1. When compared with the VS30-based approach, the wave propagation analysis reduces both overall model bias and uncertainty in site-to-site residuals at the fundamental period, and significantly reduces systematic residuals for soft or “atypical” sites that exhibit strong site amplification. The comparable performance in ground motion prediction between the physics-based simulation method and empirical ground motion models suggests the former is a viable approach for generating site-specific ground motions for geotechnical and structural response history analyses.


Sign in / Sign up

Export Citation Format

Share Document