scholarly journals The Potential of Shading Devices for Temperature Reduction in High-Rise Residential Buildings in the Tropics

2011 ◽  
Vol 21 ◽  
pp. 273-282 ◽  
Author(s):  
Nedhal A. Al-Tamimi ◽  
Sharifah Fairuz Syed Fadzil
2021 ◽  
Vol 16 (3) ◽  
pp. 87-108
Author(s):  
Nadeeka Jayaweera ◽  
Upendra Rajapaksha ◽  
Inoka Manthilake

ABSTRACT This study examines the daylight and energy performance of 27 external shading scenarios in a high-rise residential building in the urban tropics. The cooling energy, daytime lighting energy and the spatial daylight autonomy (sDA) of the building model were simulated in Rhino3D and Grasshopper simulation software. The best performance scenario (vertical and horizontal shading on the twentieth floor, horizontal shading only for the eleventh floor and no shading for the second floor) satisfied 75 sDA(300lx|50) with corresponding annual enery performance of 16%–20% in the cardinal directions. The baseline scenario, which is the current practice of providing balconies on all floors, reduced daylight to less than 75 sDA on the eleventh and second floor, even though it had higher annual enery performance (19%–24%) than the best performance scenario. Application of the design principles to a case study indicated that 58% of the spaces had over 75 sDA for both Baseline and Best performance scenarios, while an increase in enery performance of 1%–3% was found in the Best performance scenario compared to the Baseline.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Rizki A. Mangkuto ◽  
Mochamad Donny Koerniawan ◽  
Sri Rahma Apriliyanthi ◽  
Irma Handayani Lubis ◽  
Atthaillah ◽  
...  

Optimisation of shading devices in buildings is a broadly investigated topic; however, most studies only focus on a single façade orientation, since the observed buildings are typically located in high latitude regions. However, in tropical regions, optimisation of all façade orientations is required due to the relatively high solar radiation and long sunshine duration. While adaptive shading devices are a promising solution, they are not without disadvantages, and as such a combination of adaptive shading devices and a fixed shading device shall be considered. This research therefore aims to design the optimum internal shading devices on four façade orientations of a high-rise office building in a tropical city, considering fixed and adaptive shading design options, and to determine the impact on annual daylight performance using computational modelling and simulation. The simulation is carried out under: (1) fixed design option, focusing on the numbers and width of slats; and (2) adaptive design option, focusing on the slat angle on various conditions. It is found that both sDA300/50% and ASE1000,250 are only influenced by the orientation. Under the fixed design option, the sDA300/50% and ASE1000,250 targets can be achieved only on the north and south façades, and accordingly the adaptive design option shall be implemented on the east and west façades. Overall, this study contributes to knowledge regarding the optimisation of shading devices in high-rise buildings in the tropics, considering the daylight admission from the four cardinal orientations.


2021 ◽  
Vol 9 (1) ◽  
pp. 28-39
Author(s):  
Sara Dh. Bahaadin ◽  
Binaee Y. Raof ◽  
Hendren Abdulrahman

High-rise residential buildings are increasing worldwide, including cities in the Kurdistan Region of Iraq. Therefore, creating sustainable environments in and around these residential buildings are becoming an important problem. Improving energy efficiency in buildings has received critical attention worldwide. Countries have developed national sustainability strategies that lead to the lower energy consumption while maintaining comfort, reducing energy consumption, and minimizing harmful emissions. In this paper, an analysis of the impact of external shading devices in high-rise residential buildings on energy consumption of a 13-storey building in Sulaimani city is studied. The study is focused on fixed shading elements, explaining the influence of the design of vertical and horizontal shading devices on the total energy consumption of this type of building. The results show that both a single fixed horizontal blind with a depth of 20 cm and a triple vertical shading with the same depth are considered useless. The reduction in cooling loads by two fixed horizontal louvers almost doubled compared to a single fixed horizontal shading with 20 cm. Moreover, triple fixed horizontal louvers with 40 cm have almost the same effect on reducing cooling loads as triple fixed louvers with 60 cm. On the other hand, a triple fixed horizontal shading device with 60 cm has twice the effect on reducing annual cooling loads as a triple fixed vertical shading device with 60 cm.


2019 ◽  
Vol 43 (3) ◽  
pp. 229-249 ◽  
Author(s):  
Shahrzad Soudian ◽  
Umberto Berardi

This article investigates the possibility to enhance the use of latent heat thermal energy storage (LHTES) as an energy retrofit measure by night ventilation strategies. For this scope, phase change materials (PCMs) are integrated into wall and ceiling surfaces of high-rise residential buildings with highly glazed facades that experience high indoor diurnal temperatures. In particular, this article investigates the effect of night ventilation on the performance of the PCMs, namely, the daily discharge of the thermal energy stored by PCMs. Following previous experimental tests that have shown the efficacy of LHTES in temperate climates, a system comprising two PCM layers with melting temperatures selected for a year-around LHTES was considered. To quantify the effectiveness of different night ventilation strategies to enhance the potential of this composite PCM system, simulations in EnergyPlusTM were performed. The ventilation flow rate, set point temperature, and operation period were the main tested parameters. The performance of the PCMs in relation to the variables was evaluated based on indoor operative temperature and cooling energy use variations in Toronto and New York in the summer. The solidification of the PCMs was analyzed based on the amount of night ventilation needed in each climate condition. The results quantify the positive impact of combining PCMs with night ventilation on cooling energy reductions and operative temperature regulation of the following days. In particular, the results indicate higher benefits obtainable with PCMs coupled with night ventilation in the context of Toronto, since this city experiences higher daily temperature fluctuations. The impact of night ventilation design variables on the solidification rate of the PCMs varied based on each parameter leading to different compromises based on the PCM and climate characteristics.


2021 ◽  
Vol 11 (6) ◽  
pp. 2590
Author(s):  
Samson Tan ◽  
Darryl Weinert ◽  
Paul Joseph ◽  
Khalid Moinuddin

Given that existing fire risk models often ignore human and organizational errors (HOEs) ultimately leading to underestimation of risks by as much as 80%, this study employs a technical-human-organizational risk (T-H-O-Risk) methodology to address knowledge gaps in current state-of-the-art probabilistic risk analysis (PRA) for high-rise residential buildings with the following goals: (1) Develop an improved PRA methodology to address concerns that deterministic, fire engineering approaches significantly underestimate safety levels that lead to inaccurate fire safety levels. (2) Enhance existing fire safety verification methods by incorporating probabilistic risk approach and HOEs for (i) a more inclusive view of risk, and (ii) to overcome the deterministic nature of current verification methods. (3) Perform comprehensive sensitivity and uncertainty analyses to address uncertainties in numerical estimates used in fault tree/event trees, Bayesian network and system dynamics and their propagation in a probabilistic model. (4) Quantification of human and organizational risks for high-rise residential buildings which contributes towards a policy agenda in the direction of a sustainable, risk-based regulatory regime. This research contributes to the development of the next-generation building codes and risk assessment methodologies.


Sign in / Sign up

Export Citation Format

Share Document