scholarly journals Design Optimisation of Fixed and Adaptive Shading Devices on Four Façade Orientations of a High-Rise Office Building in the Tropics

Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Rizki A. Mangkuto ◽  
Mochamad Donny Koerniawan ◽  
Sri Rahma Apriliyanthi ◽  
Irma Handayani Lubis ◽  
Atthaillah ◽  
...  

Optimisation of shading devices in buildings is a broadly investigated topic; however, most studies only focus on a single façade orientation, since the observed buildings are typically located in high latitude regions. However, in tropical regions, optimisation of all façade orientations is required due to the relatively high solar radiation and long sunshine duration. While adaptive shading devices are a promising solution, they are not without disadvantages, and as such a combination of adaptive shading devices and a fixed shading device shall be considered. This research therefore aims to design the optimum internal shading devices on four façade orientations of a high-rise office building in a tropical city, considering fixed and adaptive shading design options, and to determine the impact on annual daylight performance using computational modelling and simulation. The simulation is carried out under: (1) fixed design option, focusing on the numbers and width of slats; and (2) adaptive design option, focusing on the slat angle on various conditions. It is found that both sDA300/50% and ASE1000,250 are only influenced by the orientation. Under the fixed design option, the sDA300/50% and ASE1000,250 targets can be achieved only on the north and south façades, and accordingly the adaptive design option shall be implemented on the east and west façades. Overall, this study contributes to knowledge regarding the optimisation of shading devices in high-rise buildings in the tropics, considering the daylight admission from the four cardinal orientations.

2020 ◽  
Vol 12 (23) ◽  
pp. 10145
Author(s):  
Abdelhakim Mesloub ◽  
Aritra Ghosh ◽  
Mabrouk Touahmia ◽  
Ghazy Abdullah Albaqawy ◽  
Emad Noaime ◽  
...  

This paper presents the impact on energy performance and visual comfort of retrofitting photovoltaic integrated shading devices (PVSDs) to the façade of a prototype office building in a hot desert climate. EnergyPlus™ and the DIVA-for-Rhino© plug-ins were used to perform numerical simulations and parametric analyses examining the energy performance and visual comfort of five configurations, namely: (1) inclined single panel PVSDs, (2) unfilled eggcrate PVSDs, (3) a louvre PVSD of ten slats tilted 30° outward, (4) a louvre PVSD of five slats tilted 30° outward, and (5) an STPV module with 20% transparency which were then compared to a reference office building (ROB) model. The field measurements of an off-grid system at various tilt angles provided an optimum tilt angle of 30°. A 30° tilt was then integrated into some of the PVSD designs. The results revealed that the integration of PVSDs significantly improved overall energy performance and reduced glare. The unfilled eggcrate PVSD did not only have the highest conversion efficiency at ȵ 20% but generated extra energy as well; an essential feature in the hot desert climate of Saudi Arabia.


2020 ◽  
Vol 172 ◽  
pp. 22008
Author(s):  
Alexander David ◽  
Thomas Bednar

Near the center of Vienna one can find the world’s first office tower which was designed to feed more energy into the power grid than is required to operate and use the building. This building is the result of the refurbishment of an over 40 years old high-rise building. The so called “(Plus-)Plus-Energy Office High-Rise Building” offers office space for several institutes of the TU Wien. The building was planned and simulated under the premise that every office occupant uses highly energy-efficient IT-hardware which would result in an average electrical power consumption of approximately 50 Watts per office workplace. Moreover, the cooling system of the building was planned for this case, allowing only for a minimal internal thermal load. To realize the simulation results, conventional office IT-hardware needs to be substituted by energy-efficient one and all intensive computing processes, e.g. simulations, ought to be outsourced into the building’s server room. This research presents the challenges faced during the transition from a conventional scientific office setup to an energy-efficient one. The method which was used to encourage the occupants to participate in this transition process will be discussed and the impact on the building’s energy consumption will be shown.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Md. Jewel Rana ◽  
Md. Rakibul Hasan ◽  
Md. Habibur Rahman Sobuz

PurposeApplication of appropriate shading device strategies in buildings can reduce direct solar heat gain through windows as well as optimize cooling and artificial lighting load. This study investigates the impact of common shading devices such as overhangs, fins, horizontal blinds, vertical blinds and drapes on energy consumption of an office building and suggests energy efficient shading device strategies in the contexts of unique Bangladeshi subtropical monsoon climate.Design/methodology/approachThis research was performed through the energy simulation perspective of a prototype office building using a validated building energy simulation tool eQUEST. Around 100 simulation patterns were created considering various types of shading devices and building orientations. The simulation results were analysed comprehensively to find out energy-efficient shading device strategies.FindingsOptimum overhang and fin height is equal to half of the window height in the context of the subtropical climate of Bangladesh. South and West are the most vulnerable orientations, and application of shading devices on these two orientations shows the highest reduction of cooling load and the lowest increment of lighting load. An existing building was able to save approximately 7.05% annual energy consumption by applying the shading device strategies that were suggested by this study.Originality/valueThe shading device strategies of this study can be incorporated into the Bangladesh National Building Code (BNBC) as new energy-efficient building design strategies because the BNBC does not have any codes or regulations regarding energy-efficient shading device. It can also be used as energy-efficient shading device strategies to other Southeast Asian countries with similar climatic contexts of Bangladesh.


2021 ◽  
Vol 9 (1) ◽  
pp. 28-39
Author(s):  
Sara Dh. Bahaadin ◽  
Binaee Y. Raof ◽  
Hendren Abdulrahman

High-rise residential buildings are increasing worldwide, including cities in the Kurdistan Region of Iraq. Therefore, creating sustainable environments in and around these residential buildings are becoming an important problem. Improving energy efficiency in buildings has received critical attention worldwide. Countries have developed national sustainability strategies that lead to the lower energy consumption while maintaining comfort, reducing energy consumption, and minimizing harmful emissions. In this paper, an analysis of the impact of external shading devices in high-rise residential buildings on energy consumption of a 13-storey building in Sulaimani city is studied. The study is focused on fixed shading elements, explaining the influence of the design of vertical and horizontal shading devices on the total energy consumption of this type of building. The results show that both a single fixed horizontal blind with a depth of 20 cm and a triple vertical shading with the same depth are considered useless. The reduction in cooling loads by two fixed horizontal louvers almost doubled compared to a single fixed horizontal shading with 20 cm. Moreover, triple fixed horizontal louvers with 40 cm have almost the same effect on reducing cooling loads as triple fixed louvers with 60 cm. On the other hand, a triple fixed horizontal shading device with 60 cm has twice the effect on reducing annual cooling loads as a triple fixed vertical shading device with 60 cm.


Sign in / Sign up

Export Citation Format

Share Document