scholarly journals A modeling method of sport shoes for dynamic analysis of shoe-body coupled system

2012 ◽  
Vol 34 ◽  
pp. 272-277 ◽  
Author(s):  
Sekiya Koike ◽  
Shinpei Okina
2012 ◽  
Vol 238 ◽  
pp. 719-722
Author(s):  
Zhen Xia Li ◽  
Yuan Zhao Chen

Dynamic responses of coupled system were analyzed when the speed of train was 350km/h and the transition was filled with graded broken stones mixed 5% cement. Results indicate that setting form of bridge-approach embankment section has little effect on dynamic responses, thus designers can choose it on account of practical circumstances. Based on the study from vehicle-track dynamics, we suggest that the coefficient of subgrade reaction (K30) should be greater than 190MPa within 0-5m zone behind abutment and be greater than 150MPa in other zones.


2013 ◽  
Vol 303-306 ◽  
pp. 1280-1285
Author(s):  
Shu Xu ◽  
Fu Ming Li

This article puts forward object-oriented Petri net modeling method, which possesses good encapsulation and modularity compared with current ordinary modeling method. On the macro level, it divides the re-entrant lines into different object modules according to the technology, so that the complexity of models is largely reduced through message delivery between objects. In the micro level, it explains objects' internal operational mechanism, in another word, each object's internal operation cannot be affected by other objects and environment. At last, it makes modeling and dynamic analysis by taking LED chips' processing flow for example, showing that re-entrant lines model based on object-oriented Petri net possesses good modeling ability.


1963 ◽  
Vol 85 (3) ◽  
pp. 237-242
Author(s):  
Arthur D. Brickman ◽  
Barton L. Jenks

Many self-contained machines used in industry serve to generate a sustained mechanical vibration for performing such diverse operations as vibration testing, hammering, material conveying, impacting, and screening. A particular class of such machines having only plane motion is idealized as a dynamic “vibrator” consisting of a two-mass, spring-coupled system driven internally by an oscillatory force. A dynamic analysis of this system is presented to show that the steady-state motion has both translational and rotational components. Specific methods are given for predicting the resultant direction and amplitude of motion for any point in the vibrator system. Results of the dynamic analysis show quantitatively the effect of system resonance, mass distribution, gravity-center configuration, and internal damping on vibrator operation and these design factors are discussed in terms of typical vibrator applications.


Author(s):  
Partha Chakrabarti

A mooring facility for a Floating Storage and Offloading (FSO) system, due to site conditions such as shallow water, often uses a fixed mooring tower for mooring of the FSO. When a fixed mooring tower in the form of a jacket structure is used, the turntable is mounted on the top of the jacket so that the FSO can weathervane due to actions of wind, wave and current forces. Product swivels are also located on this structure for uninterrupted flow of the product to the FSO when it rotates. The connection of the FSO to the turntable is through a rigid yoke. The yoke consists of two yoke arms meeting at a point hinged at the turntable, one large diameter cylinder for providing the stabilizing ballast load and two pendants supporting the ballast. The jacket has to be designed for the mooring loads in addition to the wind, wave and current loads on itself. The rigid yoke system is designed so that the varying draft conditions of the FSO as well as its motions can be suitably handled and absorbed. Complications may arise when the jacket is located in a seismically active site. When a site is prone to very strong ground motions, seismic response of the jacket in conjunction with the moored FSO has to be studied. The additional requirement is that any vibration of the jacket is suitably absorbed by the yoke system or a suitable isolation device is designed between the link or the yoke structure and the FSO. The weight of the suspended mass is a key design variable which affects this behavior. A structural dynamic model of the coupled jacket-yoke-frame-FSO system is analyzed using nonlinear time domain analysis technique. The calibrated El Centro ground accelerations are used for this analysis as a representative seismic excitation. A comparison of the results for jacket alone and the coupled system enables us to determine the effect of the yoke-frame-FSO on the dynamic response. The requirement, if any, of vibration isolation device for the nonlinear link (yoke) structure is decided from the dynamic analysis results. The dynamic analysis of the coupled system is complex. The complexities in the model arise due to: • The nonlinearity of the soil-pile system; • Nonlinearity of the yoke mechanism; • The fact that the FSO is a floating structure and it is free from the base excitation; • The FSO involves a large mass and is essentially free floating in water. The dynamic analyses are performed in several stages in view of the above complexities. Initially, the mode shapes and frequencies of the jacket alone are evaluated. Then the jacket is analyzed using the response spectrum approach with the design seismic spectrum. Subsequently time domain analysis of the jacket alone is performed using the calibrated El Centro seismic time history. Finally, the coupled system is analyzed for the time history of ground motion. Since the seismic event represents the design Strength Level Earthquake (SLE) condition, which is a rare event, only the FSO is coupled to the jacket, the offtake tanker is not assumed to be present during this extreme event. The nonlinear time domain analysis includes the nonlinear link (yoke) which is a mechanism by virtue of the hinges present. Therefore, the analysis requires geometric nonlinearity of the link to be considered to simulate the large displacements and the large rotations of the link, in addition to the nonlinearities of the pile-soil system. From the results of the analyses conclusions are drawn about effectiveness of vibration isolation by comparing the results of the jacket-yoke-FSO system to those of the jacket alone.


2012 ◽  
Vol 170-173 ◽  
pp. 1497-1503
Author(s):  
Bo Liang ◽  
Hong Luo ◽  
Wei Qing

In this paper, vehicle systems and track-tunnel system are regarded as an interactional, mutual coupling overall system and the interaction between wheel and rail is regarded as the “ligament” of these two subsystems. The vehicle vibration model and vibration equation are established by considering the body vertical vibration, a suspension of vertical vibration and wheelset vertical vibration. By the displacement compatibility condition of the vehicle and track, integrating the vehicle equations and discretized track-tunnel vibration equation, the dynamic coupling model and the equations that reflect the vehicle-track systematicness is constituted. It provides a reference for the further research of the dynamic analysis of vehicle-tunnel coupled system.


1984 ◽  
Vol 106 (1) ◽  
pp. 126-132 ◽  
Author(s):  
S. S. Kim ◽  
A. A. Shabana ◽  
E. J. Haug

A method is presented for nonlinear, transient dynamic analysis of vehicle systems that are composed of interconnected rigid and flexible bodies. The finite element method is used to characterize deformation of each elastic body and a component mode technique is employed to reduce the number of elastic generalized coordinates. Equations of motion and constraints of the coupled system are formulated in terms of a minimal set of modal and reference generalized coordinates. A Lagrange multiplier technique is used to account for kinematic constraints between bodies and a generalized coordinate partitioning technique is employed to eliminate dependent coordinates. The method is applied to a planar truck model with a flexible chassis and nonlinear suspension components. Simulation results for transient dynamic response as the vehicle traverses a bump, including the effect of bump-stops, and random terrain show that flexibility of the chassis can be routinely accounted for and predicts significant effects on vibratory motion of the vehicle. Compared with a rigid body model, flexibility of the chassis increases peak acceleration of the chassis and induces high-frequency vertical acceleration in the range of human resonance, measured in this paper as driver absorbed power, which deteriorates ride quality of off-road vehicles.


Sign in / Sign up

Export Citation Format

Share Document