scholarly journals Forming Limit Analyses of Cold Rolled IF Steel Sheet Using Differential Work Hardening Model

2014 ◽  
Vol 81 ◽  
pp. 1246-1251 ◽  
Author(s):  
Tomoyuki Hakoyama ◽  
Toshihiko Kuwabara
2010 ◽  
Vol 654-656 ◽  
pp. 1255-1258 ◽  
Author(s):  
Dmitry Orlov ◽  
Rimma Lapovok ◽  
László S. Tóth ◽  
Ilana B. Timokhina ◽  
Peter D. Hodgson ◽  
...  

As-received hot-rolled 5.6 mm thick IF steel sheet was symmetrically/asymmetrically cold rolled at room temperature down to 1.9 mm. The asymmetric rolling was carried out in monotonic (an idle roll is always on the same side of the sheet) and reversal (the sheet was turned 180º around the rolling direction between passes) modes. Microstructure, texture and mechanical properties were analysed. The observed differences in structure and mechanical properties were modest, and therefore further investigation of the effects of other kinds of asymmetry is suggested.


2016 ◽  
Author(s):  
José Divo Bressan ◽  
Luciano Pessanha Moreira ◽  
Maria Carolina dos Santos Freitas

2015 ◽  
Vol 651-653 ◽  
pp. 83-88 ◽  
Author(s):  
Satoshi Shirakami ◽  
Shigeru Yonemura ◽  
Tohru Yoshida ◽  
Noriyuki Suzuki ◽  
Toshihiko Kuwabara

In-plane tension/compression tests of a cold rolled interstitial-free (IF) steel and sheet a 980MPa dual phase high strength steel sheet (980DP) were carried out to investigate the work-hardening behavior under two-stage loading paths. The two-stage loading paths consist of the uniaxial tension/compression for the rolling direction (RD) followed by unloading and subsequent uniaxial tension/compression in the 0°, 45° and 90° directions from the first loading direction (0°-, 45°- and 90°-loading). The work hardening behavior in the second loading was different between the 980DP and the IF steel. It was found that the work hardening behaviors were significantly affected by the inner product of the strain rate mode tensors for the first and second loading and that the effect of the deformation mode (tension/compression) was small.


2010 ◽  
Vol 638-642 ◽  
pp. 2781-2786
Author(s):  
Chang Shu He ◽  
Sadahiro Tsurekawa ◽  
Hiroyuki Kokawa ◽  
Xiang Zhao ◽  
Liang Zuo

An AC magnetic field (0.5Tesla) is applied with the field direction perpendicular to the rolling direction during annealing of a 76% cold-rolled IF steel sheet. Microstructure and texture evolution in the as-annealed specimens were determined using SEM based OIM technique. It is found that the recrystallization is noticeably retarded by AC magnetic field annealing. At the early stage of recrystallization (annealing at 650°C for 30min), the development of (111) <123> orientations was favored by the AC magnetic field. With progress of recrystallization (annealing at 700°C and 750°C for 30min), the applied AC magnetic field suppressed the development of γ-fiber recrystallization textures to some extent.


2010 ◽  
Vol 638-642 ◽  
pp. 824-828
Author(s):  
Yan Wu ◽  
Chang Shu He ◽  
Yu Dong Zhang ◽  
Xiang Zhao ◽  
Liang Zuo ◽  
...  

The effect of high magnetic field annealing on the nucleation sites for recrystallized nuclei with {111}<112> orientation in the initial stage of recrystallization in as-annealed interstitial-free (IF) steel sheet were investigated by the SEM-EBSD analysis. Specimens of cold rolled IF steel sheet were annealed at 650°C for 0min and 10min respectively with a 12-tesla magnetic field to obtain a partially recrystallized microstructure. During the magnetic field annealing, they were respectively placed at the center of the applied field with their rolling planes parallel to the magnetic field direction (MD), and with their rolling direction (RD) parallel and normal to the MD, respectively. It was found that different to the non-field annealed specimen, in the field annealed specimens, the {111}<112> oriented recrystallized nulei favored to nucleate in the {111}<112> deformed matrix and not in the {111}<110> deformed matrix. This phenomenon may be attributed to the magnetic ordered state induced by the magnetic field, which might suppress the formation of high-energy grain boundaries between the newly formed nuclei and the deformed matrix.


2011 ◽  
Vol 415-417 ◽  
pp. 1651-1655
Author(s):  
Guo Rong Wu

In order to solve the problem of mold powder entrapment which is one of the affecting factors on faint-sliver defect in IF cold-rolled steel sheet in casting process, continuous casting process is optimized. Based on the analysis of the defect, the composition of mold powder is optimized. Otherwise, surface tension and viscosity of mold powder are raised. With theses countermeasures, mold powder entrapment and casting subcutaneous slag is decreased obviously. In addition, the rate of faint-sliver defect in cold-rolled IF steel sheet has been reduced from 5.21% to below 1.0%.


Sign in / Sign up

Export Citation Format

Share Document