scholarly journals On the Resistance Evaluation of Lateral-torsional Buckling of Bisymmetrical I-section Beams Using Finite Element Simulations

2016 ◽  
Vol 153 ◽  
pp. 180-188 ◽  
Author(s):  
Marian Giżejowski ◽  
Radosław Szczerba ◽  
Marcin Gajewski ◽  
Zbigniew Stachura
2016 ◽  
Vol 43 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Chris Mantha ◽  
Xi Chen ◽  
Yi Liu

This paper presents results of both an experimental and a finite element study on the lateral torsional buckling behaviour and strength of twin plate girder systems with only discrete torsional braces. Two scaled twin-beam specimens with different arrangements of lateral and torsional braces were tested and results were used to validate the finite element model. The finite element study considered the effect of individual brace member stiffness and the number of braces. Results showed that for twin plate girders braced with only torsional braces, the critical buckling moment has the most significant increase when the number of interior braces increases from two to three. For a given girder section, the increase in the critical moment capacity by increasing the cross-frame member size is minimal. The lateral torsional buckling moment equation as well as the brace force design procedure contained in the Canadian Highway Bridge Design Code were examined. A relationship between the ratio of provided-to-required torsional stiffness and the effective length factor was discussed.


Author(s):  
Emre Erkmen ◽  
Vida Niki ◽  
Ashkan Afnani

A shear deformable hybrid finite element formulation is developed for the lateral-torsional buckling analysis of fiber-reinforced composite thin-walled members with open cross-section. The method is developed by using the Hellinger-Reissner functional. Comparison to the displacement-based formulations the current hybrid formulation has the advantage of incorporating the shear deformation effects easily by using the strain energy of the shear stress field without modifying the basic kinematic assumptions of the thin-walled beam theory. Numerical results are validated through comparisons with results based on other formulations presented in the literature. Examples illustrate the effects of shear deformations and stacking sequence of the composite layers in predicting bucking loads.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2492 ◽  
Author(s):  
Dario Santo ◽  
Silvana Mattei ◽  
Chiara Bedon

Structural glass beams and fins are largely used in buildings, in the form of primary load-bearing members and bracing systems for roof or facade panels. Several loading and boundary conditions can be efficiently solved by means of bonded composites that involve the use of laminated glass sections. Additionally, the so-obtained glass members are often characterized by high slenderness. To this aim, several literature studies were dedicated to the lateral–torsional buckling (LTB) behavior of laterally unrestrained (LU) glass elements, with the support of full-scale experiments, analytical models, or finite element (FE) numerical investigations. Standardized design recommendations for LU glass members in LTB are available for designers. However, several design issues still require “ad hoc” (and often expensive) calculation studies. In most of the cases, for example, the mechanical interaction between the structural components to verify involves various typologies of joints, including continuous sealant connections, mechanical point fixings, or hybrid solutions. As a result, an accurate estimation of the theoretical LTB critical moment for such a kind of laterally restrained (LR) element represents a first key issue toward the definition and calibration of generalized design recommendations. Careful consideration should be spent for the description of the intrinsic features of materials in use, as well as for a combination of geometrical and mechanical aspects (i.e., geometry, number, position of restraints, etc.). In this paper, the attention is focused on the calculation of the elastic critical buckling moment of LR glass beams in LTB. Existing analytical approaches of the literature (mostly developed for steel constructional members) are briefly recalled. An additional advantage for extended parametric calculations is then taken from finite element (FE) numerical analyses, which are performed via the LTBeam or the ABAQUS software codes. The actual role and the effect of discrete mechanical restraints are, thus, explored for selected configurations of practical interest. Finally, the reliability of simplified calculation approaches is assessed.


2018 ◽  
Vol 22 (3) ◽  
pp. 641-655 ◽  
Author(s):  
MS Deepak ◽  
VM Shanthi

In this article, a parametric study on the lateral-torsional buckling performance of thin-walled cold-formed steel Hybrid Double-I-Box Beams through numerical analyses has been presented. These built-up beams have distinctive cross-section geometry; the presence of more section modulus at the flanges provides high resistance to flexural bending and the closed-box portion offers high stiffness to resist torsion and lateral buckling. Therefore, these beams can be used for longer spans. The nonlinear finite element analysis was performed using ABAQUS software. All the beams were modelled as ideal finite element models adopting simply supported boundary conditions and loads were applied as end moments. To acquire a large number of data, three varying parameters were considered namely, hybrid parameter ratio, that is, yield strength of flange steel to web steel (1.0, 1.3, 1.5 and 1.7); ratio of breadth to depth of the beam (4/6, 5/6, 6/6 and 7/6); and length of the beam (1.0, 2.5, 5.0, 10, 15, 20, 30, 40, 50 and 60 in m). The thickness of both the flanges and the webs were 2.5 mm. All these parameters alter the overall slenderness of the members. It is shown that at larger spans, Hybrid Double-I-Box Beams experience lateral buckling. The results obtained from the numerical studies were plotted on nondimensional moment versus nondimensional slenderness graph. These results were compared with the predictions using effective width method design rules specified in Euro codes EN 3-1-3 and buckling curve-d of EN 3-1-1, which was originally adopted lateral-torsional buckling capacities of hot-rolled steel ‘I’ sections, and the adequacy is checked. It was found that Hybrid Double-I-Box Beams has higher lateral-torsional buckling capacity than common ‘I’ or box sections. Hence, a new simplified design equation was proposed for determining lateral-torsional buckling capacity of Hybrid Double-I-Box Beams.


Sign in / Sign up

Export Citation Format

Share Document