scholarly journals Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite

2017 ◽  
Vol 184 ◽  
pp. 573-580 ◽  
Author(s):  
N. Amir ◽  
Kamal Ariff Zainal Abidin ◽  
Faizzaty Binti Md Shiri
2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


Author(s):  
Kaushal Arrawatia ◽  
Kedar Narayan Bairwa ◽  
Raj Kumar

Polymer composites have outstanding qualities such as high strength, flexibility, stiffness, and lightweight. Currently, research is being performed to develop innovative polymer composites that may be used in many operational situations and contain a variety of fibre and filler combinations. Banana fibre has low density compared to glass fibre and it is a lingo-cellulosic fibre having relatively good mechanical properties compared to glass fibre. Because of their outstanding qualities, banana fibre reinforced polymer composites are now widely used in various industries. The primary goal of this study is to determine the effect of the wt.% of banana fibre, the wt.% of SiC, and the wt.% of Al2O3 in banana fibre reinforcement composites on the mechanical and physical properties of banana fibre reinforcement composites. Tensile strength and flexural strength of unfilled banana fibre epoxy composite increased with the increase in wt. of banana fibre from 0 wt.% to 12 wt.%. Further, an increase in wt.% banana fibre drop in mechanical property was observed. It has been concluded from the study that the variation in percentage weight of filler material with fixed amount (12 wt.%) of banana fibre affects the mechanical properties of filled banana reinforcement composites. Optimum mechanical properties were obtained for BHEC5 (72 wt.% Epoxy + Hardener, 12 wt.% banana fibre and 16 wt.% Al2O3).


Author(s):  
NurFadhlin Sakina Jamil ◽  
◽  
Mazatusziha Ahmad ◽  
Ahmad Hakiim Jamaluddin ◽  
◽  
...  

Biodegradable foam packaging was chosen as an alternative food packaging material due to non-toxic and produced from renewable sources. Researchers has turned to incorporate natural fibre to enhance the mechanical properties of polymer composite foam. In this study, the objective is to identify the studies which investigated on the tensile properties of natural fiber incorporated polymer composite foam and analyzed the effect of natural fibre content and size on tensile properties. Further correlation between the natural fibre content and size on tensile properties of composite polymer foam was conducted. The studies on the natural fibre incorporated polymer composite was identify via PRISMA method. The effect of natural fibre content and natural fibre size on tensile properties of polymer composite foam were analyzed in terms of qualitative analysis via systematic review. This study employs systematic review method on the existing literature. This study has utilized supplementary databases such as SAGE Journals, ScienceDirect, Taylor & Francis, Emerald Insight, ERIC ProQuest, SpringerLink and IEEE Xplore to cater all the possible relevant literature for a comprehensive review. The systematic review method comprised of the steps that explain on the review process in the sequence of the (identification, screening, eligibility), data analysis and data abstraction. From the article used in this systematic review, most of the result shown the increased tensile properties on natural fibre reinforced polymer composite foams. The study by Texteira et al. (2014) shows that the softwood fibre with 33% of PLA loading has the highest elongation at break, and highest natural fibre size (2470 µm). While the study by Long et al. (2019) has the highest tensile strength with 30% of ABF fibre content. The composition of 20 wt% BF with 80 wt% PLA composites were concluded to have the optimum tensile properties


2019 ◽  
Author(s):  
M. R. Isa ◽  
A. B. Suhaimi ◽  
O. S. Zaroog ◽  
N. M. Zahari ◽  
S. N. Sulaiman ◽  
...  

2016 ◽  
Vol 701 ◽  
pp. 286-290 ◽  
Author(s):  
Pooria Khalili ◽  
Kim Yeow Tshai ◽  
Ing Kong ◽  
Chin Hooi Yeoh

The effects of incorporating three different types of flame retardant (FR) and two variants of graphene into 10 %wt palm EFB natural fibre (NF) filled epoxy composites were investigated in term of the flammability, thermal and mechanical properties through standard Bunsen burner experiment, bomb calorimetry, TGA and tensile tests. The types of FR employed include zinc borate (ZB), ammonium polyphosphate (APP) and alumina trihydrate (ATH) while a lab synthesised and a commercial form of graphene were used in the current work. Compared to the neat NF filled epoxy composite, specimens loaded with 15 %wt of either ZB or APP demonstrated a drip-free condition as observed from the Bunsen burner tests, which could be attributed to the strong char forming characteristic of the compositions. In specimens containing 15 %wt of either ZB or ATH, results from Bomb calorimetry revealed that these specific formulations produced the lowest mean gross heat release amongst others, suggesting better resistant to flame. Relative to the graphene incorporated composites, the post TGA measured mass residue was observed to be greater in FR rich formulations, suggesting that FR additives capable of yielding a much superior flame retardancy compared to graphene. While a slight increases in Young’s modulus was recorded in composites loaded with FR, such formulations produced several main drawbacks whereby reduction in ultimate tensile strength and elongation to break were being measured in large proportion of the specimens.


Sign in / Sign up

Export Citation Format

Share Document