bomb calorimetry
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 1)

2022 ◽  
Vol 10 (1) ◽  
pp. 74-80
Author(s):  
William B. Wang ◽  
Alex Dezieck ◽  
Bai-Jing Peng

Biomass ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Tania S. Mayala ◽  
Maryse D. Nkoua Ngavouka ◽  
Dick H. Douma ◽  
James M. Hammerton ◽  
Andrew B. Ross ◽  
...  

This study assesses the bioenergy potential of two types of aquatic biomass found in the Republic of Congo: the green macroalgae Ulva lactuca (UL) and Ledermanniella schlechteri (LS). Their combustion behaviour was assessed using elemental and biochemical analysis, TGA, bomb calorimetry and metal analysis. Their anaerobic digestion behaviour was determined using biochemical methane potential (BMP) tests. The average HHV for LS is 14.1 MJ kg−1, whereas UL is lower (10.5 MJ kg−1). Both biomasses have high ash contents and would be problematic during thermal conversion due to unfavourable ash behaviour. Biochemical analysis indicated high levels of carbohydrate and protein and low levels of lipids and lignin. Although the lipid profile is desirable for biodiesel production, the levels are too low for feasible extraction. High levels of carbohydrates and protein make both biomasses suitable for anaerobic digestion. BMP tests showed that LS and UL have an average of 262 and 161 mL CH4 gVS−1, respectively. The biodegradability (BI) of LS and UL had an average value of 76.5% and 43.5%, respectively. The analysis indicated that these aquatic biomasses are unsuitable for thermal conversion and lipid extraction; however, conversion through anaerobic digestion is promising.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1527
Author(s):  
Danya Carla Maree ◽  
Mike Heydenrych

Biomass fast pyrolysis oil is a potential renewable alternative to fossil fuels, but its viability is constrained by its corrosiveness, low higher heating value and instability, caused by high oxygenate concentrations. A few studies have outlined layered double hydroxides (LDHs) as possible catalysts for the improvement of biomass pyrolysis oil characteristics. In this study, the goal was to reduce the concentration of oxygen-rich compounds in E. grandis fast pyrolysis oils using CaAl- and MgAl- LDHs. The LDHs were supported by mesoporous silica, synthesised at different pHs to obtain different pore sizes (3.3 to 4.8 nm) and surface areas (up to 600 m2/g). The effects of the support pore sizes and use of LDHs were investigated. GC/MS results revealed that MgAl-LDH significantly reduced the concentrations of ketones and oxygenated aromatics in the electrostatic precipitator oils and increased the concentration of aliphatics. CaAl-LDH had the opposite effect. There was little effect on the oxygenate concentrations of the heat exchanger oils, suggesting that there was a greater extent of conversion of the lighter oil compounds. Bomb calorimetry also showed a marked increase in higher heating values (16.2 to 22.5 MJ/kg) in the electrostatic precipitator oils when using MgAl-LDH. It was also found that the mesoporous silica support synthesised at a pH of 7 was the most effective, likely due to the intermediate average pore width (4 nm).


Author(s):  
Michael Lubwama ◽  
Vianney Andrew Yiga ◽  
Ivan Ssempijja ◽  
Harriet Nalubega Lubwama

AbstractThe main source of fuel for domestic cooking applications in Sub-Saharan Africa is either locally available firewood species or charcoal produced by slow pyrolysis of these species. However, very few studies exist that characterize and quantify physical properties, burning rates, peak temperatures, and calorific values of typical firewood species and resulting charcoal fuels produced by slow pyrolysis. This study evaluated the mechanical and thermal properties of firewood and charcoal from five tree species namely: Dichrostachys cinerea, Morus Lactea, Piliostigma thonningii, Combretum molle, and Albizia grandibracteata. Characterization was done by scanning electron microscopy, thermogravimetric analysis, bomb calorimetry, Fourier transform infrared spectroscopy, bulk density measurements, and durability, water boiling and absorption tests. SEM images showed the development of macropores on charcoal after slow pyrolysis. Peak temperatures during firewood and charcoal combustion ranged between 515.5–621.8 °C and 741.6–785.9 °C, respectively. Maximum flame temperatures ranged between 786.9–870.8 °C for firewood and 634.4–737.3 °C for charcoal. Bulk densities and calorific values of charcoal species were higher than those for firewood species. Drop strengths for firewood were all 100% while for charcoal were between 93.7 and 100%. Water boiling tests indicated that firewood fuel performed better that charcoal fuel for low amounts of water due to higher maximum flame temperatures obtained during combustion of firewood.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11541
Author(s):  
Melissa Bateson ◽  
Clare Andrews ◽  
Jonathon Dunn ◽  
Charlotte B.C.M. Egger ◽  
Francesca Gray ◽  
...  

Food insecurity—defined as limited or unpredictable access to nutritionally adequate food—is associated with higher body mass in humans and birds. It is widely assumed that food insecurity-induced fattening is caused by increased food consumption, but there is little evidence supporting this in any species. We developed a novel technology for measuring foraging, food intake and body mass in small groups of aviary-housed European starlings (Sturnus vulgaris). Across four exploratory experiments, we demonstrate that birds responded to 1–2 weeks of food insecurity by increasing their body mass despite eating less. Food-insecure birds therefore increased their energetic efficiency, calculated as the body mass maintained per unit of food consumed. Mass gain was greater in birds that were lighter at baseline and in birds that faced greater competition for access to food. Whilst there was variation between experiments in mass gain and food consumption under food insecurity, energetic efficiency always increased. Bomb calorimetry of guano showed reduced energy density under food insecurity, suggesting that the energy assimilated from food increased. Behavioural observations of roosting showed inconsistent evidence for reduced physical activity under food insecurity. Increased energetic efficiency continued for 1–2 weeks after food security was reinstated, indicating an asymmetry in the speed of the response to food insecurity and the recovery from it. Future work to understand the mechanisms underlying food insecurity-induced mass gain should focus on the biological changes mediating increased energetic efficiency rather than increased energy consumption.


Author(s):  
Peter A. Henderson

Methods to assess the size of a population and the interactions between populations in terms of biomass (weight of living material) or energy content are described. Biomass can be expressed as wet weight, dry weight (DW), shell-free dry weight (SFDW), ash-free dry weight, or as the amount of organic carbon present. The energy content of a material may be determined directly by oxidation, either by potassium dichromate in sulphuric acid, or by burning in oxygen and determining the amount of heat liberated. The latter method—bomb calorimetry—is most convenient and is widely used in ecology, but it involves drying the material, and volatile substances can be lost. Methods to estimate standing-crop, energy density, feeding and assimilation, and production are reviewed. Energy budgets can usefully be summarized and compared if the efficiencies of various processes are calculated. Dynamic energy budget models are introduced.


2021 ◽  
Author(s):  
Claudia Campanini ◽  
Marta Albo-Puigserver ◽  
Sara Gérez ◽  
Elena Lloret-Lloret ◽  
Joan Giménez ◽  
...  

AbstractEuropean anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) are crucial species for the marine ecosystem of the Northwestern Mediterranean Sea. They account for a high percentage of fish landings and they represent an important economic income. Concerns over their stock status are rising in recent years as biomass, growth, reproductive capacity and body condition of both species are declining. Therefore, there is an urgent need for a continuous and fast body condition monitoring scheme. Energy storage variability has important implications for both fish recruitment and population structure. Direct condition indices, such as bomb calorimetry, are highly reliable for measuring the energy content, but extremely time-consuming. Alternatively, fatmeter analysis and relative condition index (Kn) have been proposed as effective indirect methods. The aim of this study is to test the application of fatmeter as a surrogate of bomb calorimetry to infer the energy content of both small pelagic fishes. For the validation, fatmeter values were compared with both energy density (ED; via bomb calorimetry) and Kn values. Individuals of both species were sampled monthly in Barcelona harbor for a year in order to assess seasonal variations in energy content. Our results highlight that fatmeter measurements are strongly correlated with calorimetry for sardine, while a weaker but significant correlation was found for anchovy. The observed differences between the two species are related to their breeding strategies. Based on this study, fatmeter analysis appears to be a faster and suitable method to evaluate the energy content of both species routinely., In addition, we provide a linear model to infer ED from fatmeter values of both small pelagic fish. Eventually, these findings could allow for the avoidance of bomb calorimetry and could be used to implement body condition monitoring protocols, and to boost continuous large-scale monitoring.


2020 ◽  
Vol 31 (3) ◽  
pp. 129-143
Author(s):  
Amina Adedoja Owodunni ◽  

This study seeks to evaluate the flame-retardant characteristics of experimental particleboard manufactured from coconut fibre using modified potato starch as a green binder. The coconut fibre was used as a replacement for the wood as a raw material in particleboard production. The adhesives used in the process were made by modifying potato starch with citric acid and glutardialdehyde. No flame-retardant additive was added during the processing, and this was done to evaluate the flame-retardant potential of the experimental coconut fibre-based particleboards. The limited oxygen index (LOI) test, the bomb calorimetry, the differential scanning calorimetry (DSC) and the dynamic mechanical analysis (DMA) were used to evaluate the thermal properties and flame retardancy rate of such particleboards. The result of the DMA showed that the coconut fibre-based particleboards had good storage modulus with heat. The bomb calorimeter and LOI results also supported the flame-retardant performance of the panels. Based on the evaluations, it could be prescribed that the coconut fibre particleboard made with citric acid modified potato starch (CAMPS) exhibited the best flame-retardant properties.


Author(s):  
Yash Pal ◽  
Anthony Raja ◽  
Kavitha Gopalakrishnan

The energy characteristics and theoretical performance of the hybrid rocket fuels are discussed in this paper. Aluminum (Al) and boron (B) metal additives were used to increase the energy density of the paraffin-based solid fuels. To predict the energy characteristics, the heat of combustion was evaluated by adiabatic bomb calorimetry. Theoretical performance parameters such as specific impulse (Isp), flame temperature, and characteristic velocity were obtained with NASA Chemical Equilibrium with Applications (CEA) code. Calorimetric test results revealed that paraffin/polyethylene/boron (P/PE/B)-based fuel formulations exhibited the highest heat of combustion among all the tested fuels. The heat of combustion value of the P/PE/B sample at 25 wt% B loading was found to be 9612 ±16 cal/g and 9293±17 cal/g for the P/PE/Al fuel formulation. The CEA results showed that the addition of Al to paraffin is noneffective in improving specific impulse performance. When B loading increased from 5 to 25 wt% in the P/PE/B, the Isp increased by 47 s compared to pure paraffin. A specific impulse increase implies the possible propellant mass saving. The reduction of the oxidizer and fuel masses may yield increased payload performance for given boundary conditions. The P/PE/B25 formulation has reported the highest value of characteristics velocity (C*) compared to other paraffin-based formulation.


Obesity ◽  
2020 ◽  
Vol 28 (12) ◽  
pp. 2315-2322
Author(s):  
Alessio Basolo ◽  
Shannon Parrington ◽  
Takafumi Ando ◽  
Tim Hollstein ◽  
Paolo Piaggi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document