scholarly journals Mathematical Modeling of Heat and Mass Processes in a Scrubber: The Box–Wilson Optimization Method

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2170
Author(s):  
Dagnija Blumberga ◽  
Vivita Priedniece ◽  
Rūdolfs Rumba ◽  
Vladimirs Kirsanovs ◽  
Agris Ņikitenko ◽  
...  

Optimal performance parameters must be found in order to organize efficient heat and mass transfer and effective flue gas cooling using a wet scrubber. Mathematical models are widely used for system optimization. However, a significant number of the available models have application limitations. This study presents a universal model for heat and mass transfer simulation in a scrubber called a fog unit, which has been developed and validated. Validation was performed by comparing the experimental and calculated results. Good agreement was achieved among the data, with differences between results not exceeding 10%. The model facilitates an investigation of the effects of gas flow, droplet size, and sprayed water on heat recovery from flue gas. An experimental matrix for fog unit capacity which included five main variables was designed and analyzed. The boundaries of the parameters are set considering the results of the experiments. The optimization method used is the path of the steepest ascent. The obtained results show the parameter change steps to achieve higher capacity of the condenser. In the studied unit, the maximum condenser capacity is limited by a flue gas flow value of 0.01 Nm3/s. The condenser optimization study that was conducted is viewed as a basis for further studies.

2017 ◽  
Vol 205 ◽  
pp. 3898-3902 ◽  
Author(s):  
Yongzhang Cui ◽  
Guokai Zhang ◽  
Wei Liu ◽  
Zhen Li ◽  
Nan Jiang

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1269
Author(s):  
Yuzhen Jin ◽  
Weida Zhao ◽  
Zeqing Li

The deflector and the rod bank are commonly used to optimize flue gas distribution in the original spray tower (OST) of a wet flue gas desulfurization system (WFGD). In this paper, the internal optimization mechanism of the deflector desulfurization spray tower (DST) and the rod bank desulfurization spray tower (RBST) are studied. Based on the Euler–Lagrange method, the standard k-ε turbulence model, an SO2 absorption model and a porous media model, the numerical simulation of the desulfurization spray tower is carried out with the verification of the model rationality. The results show that there are gas-liquid contact intensification effects in DST and RBST. Compared with OST, gas-liquid contact intensification enhances the heat and mass transfer effects of DST and RBST. The temperature difference between inlet and outlet of flue gas increased by 3.3 K and the desulfurization efficiency of DST increased by 1.8%; the pressure drop decreased by 37 Pa. In RBST, the temperature difference between the flue gas inlet and outlet increased by 5.3 K and the desulfurization efficiency increased by 3.6%; the pressure drop increased by 33 Pa.


2015 ◽  
Vol 6 (8(78)) ◽  
pp. 50
Author(s):  
Артур Юрьевич Рачинский ◽  
Михаил Константинович Безродный ◽  
Николай Никифорович Голияд ◽  
Петр Алексеевич Барабаш

1989 ◽  
Vol 75 (3) ◽  
pp. 478-485 ◽  
Author(s):  
Yoshiei KATO ◽  
Jean-Claude GROSJEAN ◽  
Jean-Pierre REBOUL ◽  
Paul RIBOUD

2003 ◽  
Vol 7 (1) ◽  
pp. 63-99 ◽  
Author(s):  
Predrag Stefanovic ◽  
Dejan Cvetinovic ◽  
Goran Zivkovic ◽  
Simeon Oka ◽  
Pavle Pavlovic

A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD) model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a) to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b) to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c) to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder), and (d) to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 815
Author(s):  
Arne Teiwes ◽  
Maksym Dosta ◽  
Michael Jacob ◽  
Stefan Heinrich

Although the benefits of pulsating multiphase flows and the concomitant opportunity to intensify heat and mass transfer processes for, e.g., drying, extraction or chemical reactions have been known for some time, the industrial implementation is still limited. This is particularly due to the lack of understanding of basic influencing factors, such as amplitude and frequency of the pulsating flow and the resulting particle dynamics. The pulsation generates oscillation of velocity, pressure, and temperature, intensifying the heat and mass transfer by a factor of up to five compared to stationary gas flow. With the goal of process intensification and targeted control of sub-processes or even the development of completely new processing routes for the formation, drying or conversion of particulate solids in pulsating gas flows as utilized in, e.g., pulse combustion drying or pulse combustion spray pyrolysis, the basic understanding of occurring transport processes is becoming more and more important. In the presented study, the influence of gas-flow conditions and particle properties on particle dynamics as well as particle residence time and the resulting heat and mass transfer in pulsating gas–solid flows are investigated.


Sign in / Sign up

Export Citation Format

Share Document