scholarly journals Evaluation of residual mechanical properties of steel fiber-reinforced reactive powder concrete after exposure to high temperature using nondestructive testing

2017 ◽  
Vol 210 ◽  
pp. 588-596 ◽  
Author(s):  
Xiaomeng Hou ◽  
Muhammad Abid ◽  
Wenzhong Zheng ◽  
Ghulam Qadir Waqar
2011 ◽  
Vol 413 ◽  
pp. 270-276 ◽  
Author(s):  
Wen Zhong Zheng ◽  
Hai Yan Li ◽  
Ying Wang ◽  
Heng Yan Xie

87 prismatic flexural steel fiber-reinforced reactive powder concrete (RPC) specimens with the size of 40mm×40mm×160mm were tested as well as 87 dumbbell-shaped axis tensile RPC specimens after being exposed to different high temperatures. The effect of steel fiber content and heating temperature on the flexural and tensile strength of steel fiber-reinforced RPC was analyzed. With the steel fiber content increasing, the flexural and tensile strength of steel fiber-reinforced RPC after high temperature improve significantly, and they increase first and then decrease with the heating temperature elevated, and the critical temperatures are 200¡æ and 120¡æ, respectively. Equations are established to express the relationship between the flexural and tensile strength of steel fiber-reinforced RPC and the heating temperature. The theoretical curves are in good agreement with the test data.


2019 ◽  
Vol 205 ◽  
pp. 321-331 ◽  
Author(s):  
Muhammad Abid ◽  
Xiaomeng Hou ◽  
Wenzhong Zheng ◽  
Raja Rizwan Hussain ◽  
Shaojun Cao ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 329 ◽  
Author(s):  
Muhammad Abid ◽  
Xiaomeng Hou ◽  
Wenzhong Zheng ◽  
Raja Hussain

This study was aimed to investigate the effect of steel, polypropylene (PP), and hybrid (steel + PP) fibers on high-temperature mechanical properties of reactive powder concrete (RPC). The mechanical properties considered are cubic compressive strength, axial or prismatic compressive strength, split-tensile strength, flexural strength, elastic modulus, peak strain, and stress-strain behavior. The strength recession due to high temperature was investigated at micro level by scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, mercury intrusion porosity, thermogravimetric, and differential scanning calorimetry analyses. The high-temperature tests were carried out at target temperatures of 120, 300, 500, 700, and 900 °C. The hot-state compressive strength of RPC started to decrease at 120 °C; however, a partial recovery at 300 °C and a gradual decrease above 300 °C were observed. The degradation of split-tensile strength, flexural strength, and elastic modulus were gradual with increasing temperature despite the effect of different fibers. Whereas, the peak strain was gradually increasing up to 700 °C. However, after 700 °C, it remained unchanged. Steel fiber reinforced RPC (SRPC) and hybrid fiber reinforced RPC (HRPC) showed a ductile behavior. PP fiber reinforced RPC (PRPC) showed a quite brittle behavior up to 300 °C; however, further heating made the microstructure porous and it became ductile too. Overall the performance of SRPC and HRPC were superior to PRPC because of higher modulus of elasticity, higher strength, and better fire resistance of steel fibers. Fiber reinforced RPC was found to have better fire resistance than traditional types of concrete based on comparative studies with the provisions of design codes and earlier research. The constitutive equations developed can be utilized in computer programs for structural design of RPC structures exposed to fire.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Gai-Fei Peng ◽  
Yi-Rong Kang ◽  
Yan-Zhu Huang ◽  
Xiao-Ping Liu ◽  
Qiang Chen

An experimental investigation was conducted on fire resistance of reactive powder concrete (RPC), mainly on explosive spalling occurrence and residual mechanical properties exposed to high temperature. The residual mechanical properties measured include compressive strength, tensile splitting strength, and fracture energy. RPC was prepared using cement, sand, silica fume, steel fiber, and polypropylene fiber. After subjected to high temperatures from 200 to 600°C, the residual mechanical properties were determined. RPC spalled considerably under high temperature. After exposure to high temperatures from 200 to 400°C, mechanical properties were enhanced more or less, which can be attributed to further hydration of cementitious materials activated by elevated temperature. Compressive strength started to decrease after exposure to 400°C, but tensile splitting strength and fracture energy started to decrease after exposure to 200°C. Incorporating hybrid fiber (polypropylene fiber and steel fiber) is a promising way to enhance resistance of RPC to explosive spalling, which should be a main objective for improving its fire resistance.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document