Governance challenges of flood-prone delta cities: Integrating flood risk management and climate change in spatial planning

2017 ◽  
Vol 114 ◽  
pp. 1-27 ◽  
Author(s):  
Maria Francesch-Huidobro ◽  
Marcin Dabrowski ◽  
Yuting Tai ◽  
Faith Chan ◽  
Dominic Stead
2018 ◽  
Vol 94 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Haixing Liu ◽  
Yuntao Wang ◽  
Chi Zhang ◽  
Albert S. Chen ◽  
Guangtao Fu

2018 ◽  
Vol 7 (1) ◽  
pp. 53-85
Author(s):  
Jing Ran ◽  
Zorica Nedovic-Budic

The policy integration of spatial planning and flood risk management is a promising approach to mitigate flooding. Scholars indicate that the absence of appropriate information base and technological capacity is among the factors impeding this integration. This study found that what needs to be improved is the access to geographic information and geographic technologies by individual policy makers, rather than the ownership of such resources by one organisation as a whole. Based on this finding, we designed the goals and functions for a Spatially Integrated Policy Infrastructure (SIPI) which shares not only geographic information but also models and analysis tools. A prototype of SIPI was also developed as an illustration of the selected functions of this SIPI. The design of SIPI is consistent with other frontier studies and projects in the field of GIS and planning. The development process also provides experience for future studies and development of infrastructures that aim at supporting policy integration.


2012 ◽  
Vol 22 (3) ◽  
pp. 518-536 ◽  
Author(s):  
P. J. Ward ◽  
W. P. Pauw ◽  
M. W. van Buuren ◽  
M. A. Marfai

2017 ◽  
Vol 41 (2) ◽  
pp. 222-237 ◽  
Author(s):  
Nicholas S Reynard ◽  
Alison L Kay ◽  
Molly Anderson ◽  
Bill Donovan ◽  
Caroline Duckworth

Floods are one of the biggest natural hazards to society, and there is increasing concern about the potential impacts of climate change on flood occurrence and magnitude. Furthermore, flood risk is likely to increase in the future not just through increased flood occurrence, but also through socio-economic changes, such as increasing population. The extent to which adaptation measures can offset this increased risk will depend on the level of future climate change, but there exists an urgent need for information on the potential impacts of climate change on floods, so that these can be accounted for by flood management authorities and local planners aiming to reduce flood risk. Agencies across the UK have been pro-active in providing such guidance for many years and in refining it as the science of climate change and hydrological impacts has developed. The history of this guidance for fluvial flood risk in England is presented and discussed here, including the recent adoption of a regional risk-based approach. Such an approach could be developed and applied to flood risk management in other countries, and to other sectors affected by climate change.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2643
Author(s):  
Flavia Simona Cosoveanu ◽  
Jean-Marie Buijs ◽  
Marloes Bakker ◽  
Teun Terpstra

Diversification of flood risk management strategies (FRMS) in response to climate change relies on the adaptive capacities of institutions. Although adaptive capacities enable flexibility and adjustment, more empirical research is needed to better grasp the role of adaptive capacities to accommodate expected climate change effects. This paper presents an analytical framework based on the Adaptive Capacity Wheel (ACW) and Triple-loop Learning. The framework is applied to evaluate the adaptive capacities that were missing, employed, and developed throughout the ‘Alblasserwaard-Vijfheerenlanden’ (The Netherlands) and the ‘Wesermarsch’ (Germany) pilot projects. Evaluations were performed using questionnaires, interviews, and focus groups. From the 22 capacities of ACW, three capacities were identified important for diversifying the current FRMS; the capacity to develop a greater variety of solutions, continuous access to information about diversified FRMS, and collaborative leadership. Hardly any capacities related to ‘learning’ and ‘governance’ were mentioned by the stakeholders. From a further reflection on the data, we inferred that the pilot projects performed single-loop learning (incremental learning: ‘are we doing what we do right?’), rather than double-loop learning (reframing: ‘are we doing the right things?’). As the development of the framework is part of ongoing research, some directions for improvement are highlighted.


2019 ◽  
Vol 40 (3) ◽  
pp. 427-443 ◽  
Author(s):  
Timo Assmuth ◽  
Tanja Dubrovin ◽  
Jari Lyytimäki

AbstractHuman health risks in dealing with floods in a river basin in South-Western Finland are analysed as an example of scientific and practical challenges in systemic adaptation to climate change and in integrated governance of water resources. The analysis is based on case reports and plans, on literature studies and on conceptual models of risks and risk management. Flood risks in the Northern European study area are aggravated by melt- and storm-water runoff, ice jams and coastal flooding. Flood risk assessment is linked with management plans based on EU directives as applied in the case area. National risk management policies and procedures of increasing scope and depth have been devised for climate change, water resources and overall safety, but an integrated approach to health risks is still largely missing. The same is true of surveys of perceived flood risks, and participatory deliberation and collaborative planning procedures for flood risk management in the case area, specifically for adaptive lake regulation. Health impacts, risks and benefits, socio-economic and systemic risks, and over-arching prevention, adaptation and compensation measures are not fully included. We propose a systematic framework for these extensions. Particular attention needs to be given to health risks due to flooding, e.g. from water contamination, moist buildings, mental stress and infrastructure damage and also from management actions. Uncertainties and ambiguities about risks present continuing challenges. It is concluded that health aspects of flooding are complex and need to be better included in assessment and control, to develop more integrated and adaptive systemic risk governance.


Sign in / Sign up

Export Citation Format

Share Document