scholarly journals Methodology for tool wear analysis by a simple procedure during milling of AISI H13 and its impact on surface morphology

2017 ◽  
Vol 13 ◽  
pp. 348-355
Author(s):  
M.T. Prado ◽  
A. Pereira ◽  
J.A. Pérez ◽  
T.G. Mathia
Author(s):  
Diego de Medeiros Barbosa ◽  
Leticia Helena Guimarães Alvarinho ◽  
Aristides Magri ◽  
Daniel Suyama

Wear ◽  
2021 ◽  
pp. 203814
Author(s):  
Marco Sorgato ◽  
Rachele Bertolini ◽  
Andrea Ghiotti ◽  
Stefania Bruschi

Author(s):  
Kshitij Pandey ◽  
Saurav Datta

The present work investigates application feasibility of PVD TiN/TiCN/TiN coated cermet and CVD Al2O3/TiCN coated SiAlON for dry machining of Inconel 825 superalloy. Machining performance is interpreted through cutting force magnitude, tool-tip temperature, and mechanisms of tool wear. Results are compared to that of CVD multi-layer TiN/TiCN/Al2O3/TiN coated WC-Co tool. It is evidenced that SiAlON tool generates lower cutting force but experiences higher tool-tip temperature than other two counterparts. Apart from abrasion and adhesion, carbide tool witnesses coating peeling and ploughing. In contrast, SiAlON tool suffers from inexorable chipping and notching. Wear pattern of cermet tool seems less severe than carbide and SiAlON. Chip's underside surface morphology appears relatively better in case of cermet tool.


Author(s):  
David Stock ◽  
Aditi Mukhopadhyay ◽  
Rob Potter ◽  
Andy Henderson

Abstract This paper presents the analysis of data collected using the MTConnect protocol from a lathe with a Computer Numerical Control (CNC). The purpose of the analysis is to determine an estimated cutting tool life and generate a model for calculating a real-time proxy of cutting tool wear. Various streams were used like spindle load, NC program blocks, the mode, execution etc. The novelty of this approach is that no information about the machining process, beyond the data provided by the machine, was necessary to determine the tool’s expected life. This method relies on the facts that a) it is generally accepted cutting loads increase with tool wear and b) that many CNC machines rely on a small set of regularly run CNC programs. These facts are leveraged to extract the total load for each run of each program on the machine, creating a dataset which is a good indicator of tool wear and replacement. The presented methodology has four key steps: extracting cycle metadata from the machine execution data; computing the integrated spindle loads for every cycle; normalizing the integrated spindle loads between different programs; extracting tool wear rates and changes from the resulting dataset. It is shown that the method can successfully extract the signature of tool wear under a common set of circumstances which are discussed in detail.


2020 ◽  
Vol 26 ◽  
pp. 1289-1292 ◽  
Author(s):  
M. Boujelbene ◽  
M.B. Mhamdi ◽  
B. Ayadi ◽  
H.P. Singh

Sign in / Sign up

Export Citation Format

Share Document