scholarly journals Hydrogen embrittlement properties of nitrogen added ultra-high-strength TRIP-aided martensitic steels evaluated by using conventional strain rate technique

2018 ◽  
Vol 15 ◽  
pp. 1581-1587 ◽  
Author(s):  
Tomohiko Hojo ◽  
Kiattada Chanvichitkul ◽  
Hiroyuki Waki ◽  
Fumihito Nishimura ◽  
Eiji Akiyama
2019 ◽  
Vol 105 (4) ◽  
pp. 443-451 ◽  
Author(s):  
Tomohiko Hojo ◽  
Riko Kikuchi ◽  
Hiroyuki Waki ◽  
Fumihito Nishimura ◽  
Yuko Ukai ◽  
...  

Author(s):  
Marina Cabrini ◽  
Sergio Lorenzi ◽  
Diego Pesenti Bucella ◽  
Tommaso Pastore

<span lang="EN-US">The paper deals with the effect of microstructure on the hydrogen diffusion in traditional ferritic-pearlitic HSLA steels and new high strength steels, with tempered martensite microstructures or banded ferritic-bainitic-martensitic microstructures. Diffusivity was correlated to the hydrogen embrittlement resistance of steels, evaluated by means of slow strain rate tests.</span>


2015 ◽  
Vol 33 (6) ◽  
pp. 529-545 ◽  
Author(s):  
Marina Cabrini ◽  
Sergio Lorenzi ◽  
Simone Pellegrini ◽  
Tommaso Pastore

AbstractThis article deals with the risk of environmentally assisted cracking of steel structures that are kept under cathodic protection (CP). The experimental results collected on both hydrogen diffusion and hydrogen embrittlement (HE) of high-strength low-alloy (HSLA) steels under CP are discussed. Hydrogen diffusion was evaluated by permeation experiments and a scanning photoelectrochemical current technique, as a function of microstructure orientation, on both loaded and unloaded specimens. HE tests were carried out under constant load, slow strain rate (SSR tests), and slow bending conditions. Tests were also carried out on several grades of HSLA steel having different microstructures. The results confirm that HE in artificial seawater under CP can occur in steel with tensile yield strength in the range of 400–660 MPa only in the presence of high cathodic polarization and continuous plastically straining conditions. HE susceptibility increased with increasing applied cathodic polarization and with decreasing strain rate. HE susceptibility of the rolled steels at relatively high strain rate (10-4 to 10-5 s-1) increased with the hydrogen diffusion coefficient. Similar results were observed in terms of the HE contribution to corrosion fatigue crack growth rate. High-temperature-tempered martensitic steels showed a lower HE susceptibility.


2021 ◽  
Vol 1016 ◽  
pp. 654-659
Author(s):  
Naoya Kakefuda ◽  
Shintaro Aizawa ◽  
Ryo Sakata ◽  
Junya Kobayashi ◽  
Goroh Itoh ◽  
...  

Low alloy TRIP steel is expected to be applied to automobile bodies because of its high strength, high ductility, and excellent impact properties and press formability. It has been reported that the low alloy TRIP steel of hydrogen embrittlement resistance is improved by utilizing the hydrogen storage characteristics of highly stable retained austenite. Therefore, for the purpose of increasing the volume fraction of retained austenite, it was produced at various cooling rates below the martensite transformation start temperature. As a result, the volume fraction of retained austenite increased, and then the effect of hydrogen embrittlement decreased. The matrix phase and retained austenite is refined with decrees of the cooling rate. It is considered that the size and surface area of the retained austenite also affected the improvement of hydrogen embrittlement resistance.


2021 ◽  
Author(s):  
Robert Moser ◽  
Preet Singh ◽  
Lawrence Kahn ◽  
Kimberly Kurtis ◽  
David González Niño ◽  
...  

This paper presents a study of crevice corrosion and environmentally assisted cracking (EAC) mechanisms in UNS S32205 and S32304 which were cold drawn to tensile strengths of approximately 1300 MPa. The study utilized a combination of electrochemical methods and slow strain rate testing to evaluate EAC susceptibility. UNS S32205 was not susceptible to crevice corrosion in stranded geometries at Cl⁻ concentrations up to 1.0 M in alkaline and carbonated simulated concrete pore solutions. UNS S32304 did exhibit a reduction in corrosion resistance when tested in a stranded geometry. UNS S32205 and S32304 were not susceptible to stress corrosion cracking at Cl⁻ concentrations up to 0.5 M in alkaline and carbonated solutions but were susceptible to hydrogen embrittlement with cathodic overprotection.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 370
Author(s):  
Michio Shimotomai

Many advanced steels are based on tempered martensitic microstructures. Their mechanical strength is characterized by fine sub-grain structures with a high density of free dislocations and metallic carbides and/or nitrides. However, the strength for practical use has been limited mostly to below 1400 MPa, owing to delayed fractures that are caused by hydrogen. A literature survey suggests that ε-carbide in the tempered martensite is effective for strengthening. A preliminary experimental survey of the hydrogen absorption and hydrogen embrittlement of a tempered martensitic steel with ε-carbide precipitates suggested that the proper use of carbides in steels can promote a high resistance to hydrogen embrittlement. Based on the surveys, martensitic steels that are highly resistant to hydrogen embrittlement and that have high strength and toughness are proposed. The heuristic design of the steels includes alloying elements necessary to stabilize the ε-carbide and procedures to introduce inoculants for the controlled nucleation of ε-carbide.


Sign in / Sign up

Export Citation Format

Share Document