scholarly journals Deformation and fracture of a titanium alloy during penetration of high-speed impactor to the target

2020 ◽  
Vol 28 ◽  
pp. 101-105
Author(s):  
S.A. Atroshenko ◽  
A.Yu. Grigor’ev ◽  
G.G. Savenkov
2020 ◽  
Vol 62 (11) ◽  
pp. 1769
Author(s):  
С.А. Атрошенко ◽  
А.Ю. Григорьев ◽  
Г.Г. Савенков

Abstract. The article is devoted to the study of the behavior of a titanium alloy under conditions of high-speed penetration at a speed of approximately 2.0 km / s. It is shown that in the target during penetration, three penetration zones are observed that differ in the mechanisms of plastic deformation and fracture.


2020 ◽  
Vol 62 (11) ◽  
pp. 1755
Author(s):  
В.И. Рождествина

The article is devoted to the study of the behavior of a titanium alloy under conditions of high-speed penetration at a speed of approximately 2.0 km / s. It is shown that in the target during penetration, three penetration zones are observed that differ in the mechanisms of plastic deformation and fracture.


2021 ◽  
Vol 11 (12) ◽  
pp. 5406
Author(s):  
Fei Yin ◽  
Xia Ye ◽  
Hongbing Yao ◽  
Pengyu Wei ◽  
Xumei Wang ◽  
...  

In order to study the spallation phenomenon of titanium alloy under the shock of nanosecond laser, the Neodymium-Yttrium-Aluminum Garnet laser was used to carry out laser shock experiments on the surface of titanium alloy. By observing and measuring the surface morphology of the target material, the forming factors and the changes of the surface morphology under different parameter settings, the forming criteria of the titanium alloy were obtained. The results show that under the single variable method, the change of laser energy can affect the target shape variable, and there is a positive correlation between them. When the thickness was greater than or equal to 0.08 mm, no obvious cracks were found in the targets. Moreover, the number of impact times was the key factor for the target deformation; with the growth of impact times, the target deformation gradually became larger until the crack appeared. The larger the diameter of the spot, the more likely the target was to undergo plastic deformation. The surface of titanium alloy with a thickness of 0.08 mm appeared to rebound under specific laser shock condition. The changes in the back of the target material were observed in real time through a high-speed camera, and the plasma induced by the laser was observed in the process. This study is based on the results of previous studies to obtain the titanium alloy forming criteria, which provides a basis for the setting of laser parameters and the thickness of the target when the nanosecond laser impacts the Ti-6AL-4V target.


2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


2010 ◽  
Vol 638-642 ◽  
pp. 1035-1040 ◽  
Author(s):  
Tetsuyuki Hiroe ◽  
Kazuhito Fujiwara ◽  
Hidehiro Hata ◽  
Mitsuru Yamauchi ◽  
Kiyotaka Tsutsumi ◽  
...  

Explosive loading techniques are applied to expand tubular cylinders, spherical shells and rings of 304 stainless steel to fragmentation, and the effects of wall thicknesses, explosive driver diameters and the constant proportionality of the in-plane biaxial stretching rates are investigated on the deformation and fracture behavior of three basic structures experimentally and numerically. In the cylinder tests, the driver is a column of high explosive PETN, inserted coaxially into the bore of a cylinder and initiated by exploding a fine wire bundle at the column axis using a discharge current from a high-voltage capacitor bank. In case of the ring tests, ring specimens are placed onto a single cylinder filled with the PETN as a expansion driver, and for sphere tests, specimens filled with the PETN are also initiated by exploding a fine copper wire line with small length located at the central point. Two types of experiments are conducted for every specimen and test condition. The first type uses high speed cameras to observe the deformation and crack generation of expanding specimens showing the final maximum in-plane stretching rate of above , and the second uses soft capturing system recovering typically most fragments successfully. The fragments are measured and investigated using a fragmentation model. The effects of test parameters on the deformation and fracture behavior for three types of structures are discussed in need of modified fragmentation model for shell structural elements.


2018 ◽  
Vol 22 (6) ◽  
pp. 989-1011 ◽  
Author(s):  
Chakradhar Bandapalli ◽  
Kundan Kumar Singh ◽  
Bharatkumar Mohanbhai Sutaria ◽  
Dhananjay Vishnuprasad Bhatt

2012 ◽  
Vol 26 ◽  
pp. 01055 ◽  
Author(s):  
A. Bragov ◽  
L. Kruszka ◽  
A. Lomunov ◽  
A. Konstantinov ◽  
D. Lamzin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document