scholarly journals Deformation of AlSi10Mg parts manufactured by Laser Powder Bed Fusion: In-situ measurements incorporating X-ray micro computed tomography and a micro testing stage

2022 ◽  
Vol 35 ◽  
pp. 168-172
Author(s):  
Joachim Koelblin ◽  
James C. Hastie ◽  
Mehmet E. Kartal ◽  
Amir Siddiq ◽  
Moataz M. Attallah
JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Benjamin Gould ◽  
Sarah Wolff ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Maria Cinta Lorenzo-Martin ◽  
...  

Author(s):  
Sheng Li ◽  
Biao Cai ◽  
Ranxi Duan ◽  
Lei Tang ◽  
Zihan Song ◽  
...  

AbstractIsotropy in microstructure and mechanical properties remains a challenge for laser powder bed fusion (LPBF) processed materials due to the epitaxial growth and rapid cooling in LPBF. In this study, a high-strength TiB2/Al-Cu composite with random texture was successfully fabricated by laser powder bed fusion (LPBF) using pre-doped TiB2/Al-Cu composite powder. A series of advanced characterisation techniques, including synchrotron X-ray tomography, correlative focussed ion beam–scanning electron microscopy (FIB-SEM), scanning transmission electron microscopy (STEM), and synchrotron in situ X-ray diffraction, were applied to investigate the defects and microstructure of the as-fabricated TiB2/Al-Cu composite across multiple length scales. The study showed ultra-fine grains with an average grain size of about 0.86 μm, and a random texture was formed in the as-fabricated condition due to rapid solidification and the TiB2 particles promoting heterogeneous nucleation. The yield strength and total elongation of the as-fabricated composite were 317 MPa and 10%, respectively. The contributions of fine grains, solid solutions, dislocations, particles, and Guinier–Preston (GP) zones were calculated. Failure was found to be initiated from the largest lack-of-fusion pore, as revealed by in situ synchrotron tomography during tensile loading. In situ synchrotron diffraction was used to characterise the lattice strain evolution during tensile loading, providing important data for the development of crystal-plasticity models.


2020 ◽  
Vol 195 ◽  
pp. 108987
Author(s):  
Nicholas P. Calta ◽  
Vivek Thampy ◽  
Duncan R.C. Lee ◽  
Aiden A. Martin ◽  
Rishi Ganeriwala ◽  
...  

2018 ◽  
Vol 154 ◽  
pp. 347-359 ◽  
Author(s):  
Philip J. DePond ◽  
Gabe Guss ◽  
Sonny Ly ◽  
Nicholas P. Calta ◽  
Dave Deane ◽  
...  

2019 ◽  
Vol 25 (S2) ◽  
pp. 2566-2567 ◽  
Author(s):  
Niranjan Parab ◽  
Cang Zhao ◽  
Ross Cunningham ◽  
Luis I. Escano ◽  
Kamel Fezzaa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document