Identifying major depressive disorder using Hurst exponent of resting-state brain networks

2013 ◽  
Vol 214 (3) ◽  
pp. 306-312 ◽  
Author(s):  
Maobin Wei ◽  
Jiaolong Qin ◽  
Rui Yan ◽  
Haoran Li ◽  
Zhijian Yao ◽  
...  
2021 ◽  
Vol 10 (19) ◽  
pp. 4322
Author(s):  
Shu-Hsien Chu ◽  
Keshab K. Parhi ◽  
Melinda Westlund Schreiner ◽  
Christophe Lenglet ◽  
Bryon A. Mueller ◽  
...  

Investigation of brain changes in functional connectivity and functional network topology from receiving 8-week selective serotonin reuptake inhibitor (SSRI) treatments is conducted in 12 unmedicated adolescents with major depressive disorder (MDD) by using wavelet-filtered resting-state functional magnetic resonance imaging (fMRI). Changes are observed in frontal-limbic, temporal, and default mode networks. In particular, topological analysis shows, at the global scale and in the 0.12–0.25 Hz band, that the normalized clustering coefficient and smallworldness of brain networks decreased after treatment. Regional changes in clustering coefficient and efficiency were observed in the bilateral caudal middle frontal gyrus, rostral middle frontal gyrus, superior temporal gyrus, left pars triangularis, putamen, and right superior frontal gyrus. Furthermore, changes of nodal centrality and changes of connectivity associated with these frontal and temporal regions confirm the global topological alternations. Moreover, frequency dependence is observed from FDR-controlled subnetworks for the limbic-cortical connectivity change. In the high-frequency band, the altered connections involve mostly frontal regions, while the altered connections in the low-frequency bands spread to parietal and temporal areas. Due to the limitation of small sample sizes and lack of placebo control, these preliminary findings require confirmation with future work using larger samples. Confirmation of biomarkers associated with treatment could suggest potential avenues for clinical applications such as tracking treatment response and neurobiologically informed treatment optimization.


2019 ◽  
Vol 3 ◽  
pp. 247054701987788
Author(s):  
Megan M. Hoch ◽  
Gaelle E. Doucet ◽  
Dominik A. Moser ◽  
Won Hee Lee ◽  
Katherine A. Collins ◽  
...  

Background Digital therapeutics such as cognitive–emotional training have begun to show promise for the treatment of major depressive disorder. Available clinical trial data suggest that monotherapy with cognitive–emotional training using the Emotional Faces Memory Task is beneficial in reducing depressive symptoms in patients with major depressive disorder. The aim of this study was to investigate whether Emotional Faces Memory Task training for major depressive disorder is associated with changes in brain connectivity and whether changes in connectivity parameters are related to symptomatic improvement. Methods Fourteen major depressive disorder patients received Emotional Faces Memory Task training as monotherapy over a six-week period. Patients were scanned at baseline and posttreatment to identify changes in resting-state functional connectivity and effective connectivity during emotional working memory processing. Results Compared to baseline, patients showed posttreatment reduced connectivity within resting-state networks involved in self-referential and salience processing and greater integration across the functional connectome at rest. Moreover, we observed a posttreatment increase in the Emotional Faces Memory Task-induced modulation of connectivity between cortical control and limbic brain regions, which was associated with clinical improvement. Discussion These findings provide initial evidence that cognitive–emotional training may be associated with changes in short-term plasticity of brain networks implicated in major depressive disorder. Conclusion Our findings pave the way for the principled design of large clinical and neuroimaging studies.


Sign in / Sign up

Export Citation Format

Share Document