Corrections for initial isotopic disequilibrium in the speleothem U-Pb dating method

2019 ◽  
Vol 54 ◽  
pp. 101009 ◽  
Author(s):  
J. Engel ◽  
J. Woodhead ◽  
J. Hellstrom ◽  
R. Maas ◽  
R. Drysdale ◽  
...  
2021 ◽  
Author(s):  
Nick Roberts ◽  
Jack Lee

<p>Several isotopic systems can potentially be used to provide absolute chronology of carbonate minerals; these include Rb-Sr, Sm-Nd, U-Pb and U-Th. The production of a robust date requires incorporation of the parent isotope during formation, and ideally low abundance of the daughter isotope. Variable parent-daughter (P/D) abundance during formation additionally can increase the robustness of the resulting isochron. The ability to use high spatial resolution sampling via laser ablation (LA-) ICP-MS, makes it the most attractive technique, as varying P/D ratios can be sampled within single age domains, whether these be crystals, growth bands, or other textural domains. Of the systems available in carbonate, U-Pb is the only one that is commonly applied with LA-ICP-MS methods, although the others are all possible with modern instrumentation. Of note, collision-cell technology means that Rb-Sr is regaining popularity as an in situ dating method. Carbonate geochronology can be achieved at a range of timescales, with U-Th ranging from 100s yrs to ca. 500 ka, and U-Pb ranging from 100s ka to 100s Ma. The potential for isotopic disequilibrium effecting measured U-Pb ages, means that young (< 10 Ma) U-Pb dates are susceptible to inaccuracy. Published LA-ICP-MS U-Pb dates suggest that this method can be pushed well into the Precambrian.</p><p> </p><p>The application of U-Th and U-Pb geochronology to provide direct timing constraints on deformation gained ground around 10 and 5 years ago, respectively. Because LA-ICP-MS instrumentation is relatively common, and because ancient carbonates provide undated material of significant interest, U-Pb in particular has become a rapidly growing technique. The biggest advance in LA-ICP-MS U-Pb dating has been the characterisation of matrix-matched calcite reference materials (RMs). The observation of minor matrix-related effects between carbonate matrices however, means that the availability of well characterised RMs for minerals such as dolomite and siderite, are a limiting factor in the accuracy of these non-calcite dates. In terms of deformation, most existing data corresponds to calcite.</p><p> </p><p>Calcite precipitates from fluid at a range of temperatures in the upper crust, with fluid-flow typically being enhanced by brittle deformation, i.e. faulting and fracturing. To link calcite dates to the timing of specific deformational events, such as fault slip or fracture-opening, various ‘syn-tectonic’ or ‘syn-kinematic’ vein types have ben utilised. These include slickenfibres, breccia cements, and various types of vein arrays. Each of these structures has variable ability to faithfully record the timing of fault slip, and the ability to link calcite mineralisation to the timing of fault slip remains one of the most assumptive parts of this method. Detailed petrographic and compositional characterisation and documentation are required, for which a range of methods are available, such as cathodoluminescence and trace element mapping. Along with a summary of the advances in carbonate geochronology, various examples of vein structures and of methods for characterisation will be discussed, including examples where there is evidence for overprinting by later fluid-flow.</p>


2021 ◽  
Vol 13 (7) ◽  
pp. 1316
Author(s):  
Jia Liu ◽  
Zongyu Yue ◽  
Kaichang Di ◽  
Sheng Gou ◽  
Shengli Niu

The age of Mars yardangs is significant in studying their development and the evolution of paleoclimate conditions. For planetary surface or landforms, a common method for dating is based on the frequency and size distribution of all the superposed craters after they are formed. However, there is usually a long duration for the yardangs’ formation, and they will alter the superposed craters, making it impossible to give a reliable dating result with the method. An indirect method by analyzing the ages of the superposed layered ejecta was devised in the research. First, the layered ejecta that are superposed on and not altered by the yardangs are identified and mapped. Then, the ages of the layered ejecta are derived according to the crater frequency and size distribution on them. These ages indicate that the yardangs ceased development by these times, and the ages are valuable for studying the evolution of the yardangs. This indirect dating method was applied to the areas of Martian yardangs in the Medusae Fossae Formation (MFF). The ages of the selected six layered ejecta range from ~0.50 Ga to ~1.5 Ga, indicating that the evolution of the corresponding yardangs had been ceased before these times. Analysis of more layered ejecta craters and superposed yardangs implies that yardangs in the MFF have a long history of development and some yardangs are still in active development.


1978 ◽  
Vol 15 (3) ◽  
pp. 431-437 ◽  
Author(s):  
John G. Farmer

The 210Pb dating method has been applied successfully to the determination of recent sedimentation rates at four sites distributed among the three major sedimentary basins (Niagara, Mississauga and Rochester) of Lake Ontario. Following correction for effects due to compaction of the sediments, mean sedimentation rates ranging from 0.02 cm/year at the periphery of the Mississauga basin to 0.11 cm/year in the Niagara and Rochester basins were determined. Allowance for compaction reduced the non-compaction-corrected sedimentation rates by 20–35%. Neither 210Pb nor fallout 137Cs profiles indicated surface mixing of sediment sufficient to noticeably affect the calculated sedimentation rates. At all four sites, the sedimentation rate seems to have remained constant during the last 100–150 years.


2021 ◽  
Author(s):  
Anais Orsi ◽  
Ilaria Crotti ◽  
Roxanne Jacob ◽  
Amaelle Landais ◽  
Elise Fourré

<p>In the search for very old ice, finding the age of the ice is a key parameter necessary for its interpretation. Most ice core dating method are based on chronological markers that require the ice to be in stratigraphic order. However, the oldest ice is likely to be found at the bottom of ice sheets, where the stratigraphy is disturbed, or in ablation areas, where the classical methods cannot be used. Absolute dating techniques have recently been developed to provide new constraints on the age of old ice, but their development in the context of ice cores is limited by the large sample size required. Here, we discuss the analytical performances of a new technique for 40Ar dating, which allows us to provide a reliable age with 80g of ice rather than 800g, as previously published. We present an application to the dating of the bottom of the TALDICE and Dome C ice cores. This method represents a significant advance for its application to the very precious ice at the bottom of ice cores.</p>


Science ◽  
2017 ◽  
Vol 357 (6356) ◽  
pp. 1109.5-1110
Author(s):  
Keith T. Smith
Keyword(s):  

Radiocarbon ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 505-515 ◽  
Author(s):  
Hiroyuki Kitagawa ◽  
Johannes Van Der Plicht

A sequence of annually laminated sediments is a potential tool for calibrating the radiocarbon time scale beyond the range of the absolute tree-ring calibration (11 ka). We performed accelerator mass spectrometric (AMS) 14C measurements on >250 terrestrial macrofossil samples from a 40,000-yr varve sequence from Lake Suigetsu, Japan. The results yield the first calibration curve for the total range of the 14C dating method.


Sign in / Sign up

Export Citation Format

Share Document