Lake surface fluctuations since the late glaciation at Lake Daihai, North central China: A direct indicator of hydrological process response to East Asian monsoon climate

2009 ◽  
Vol 194 (1-2) ◽  
pp. 45-54 ◽  
Author(s):  
Qianli Sun ◽  
Sumin Wang ◽  
Jie Zhou ◽  
Ji Shen ◽  
Peng Cheng ◽  
...  
2021 ◽  
Vol 13 (9) ◽  
pp. 4848
Author(s):  
Liwei Wu ◽  
Xinling Li ◽  
Qinghai Xu ◽  
Manyue Li ◽  
Qiufeng Zheng ◽  
...  

The East Asian monsoon system is an important part of global atmospheric circulation; however, records of the East Asian monsoon from different regions exhibit different evolutionary rhythms. Here, we show a high-resolution record of grain size and pollen data from a lacustrine sediment core of Dajiuhu Lake in Shennongjia, Hubei Province, China, in order to reconstruct the paleovegetation and paleoeclimate evolution of the Dajiuhu Basin since the late Middle Pleistocene (~237.9 ka to the present). The results show that grain size and pollen record of the core DJH-2 are consistent with the δ18O record of stalagmites from Sanbao Cave in the same area, which is closely related to the changes of insolation at the precessional (~20-kyr) scale in the Northern Hemisphere. This is different from the records of the Asian summer monsoon recorded in the Loess Plateau of North China, which exhibited dominant 100-kyr change cyclicities. We suggest that the difference between paleoclimatic records from North and South China is closely related to the east–west-oriented mountain ranges of the Qinling Mountains in central China that blocked weakened East Asia summer monsoons across the mountains during glacial periods.


2020 ◽  
Vol 6 (46) ◽  
pp. eabc2414
Author(s):  
Yichao Wang ◽  
Huayu Lu ◽  
Kexin Wang ◽  
Yao Wang ◽  
Yongxiang Li ◽  
...  

East Asian monsoon variability in the Pliocene warm world has not been sufficiently studied because of the lack of direct records. We present a high-resolution precipitation record from Pliocene fluvial-lacustrine sequences in the Weihe Basin, Central China, a region sensitive to the East Asian monsoon. The record shows an abrupt monsoon shift at ~4.2 million years ago, interpreted as the result of high-latitude cooling, with an extratropical temperature decrease across a critical threshold. The precipitation time series exhibits a pronounced ~100–thousand year periodicity and the presence of precession and half-precession cycles, which suggest low-latitude forcing. The synchronous phase but mismatched amplitudes of the East Asian monsoon precipitation proxy and eccentricity suggest a nonlinear but sensitive precipitation response to temperature forcing in the Pliocene warm world. These observations highlight the role of high- and low-latitude forcing of East Asian monsoon variations on tectonic and orbital time scales.


2006 ◽  
Vol 65 (3) ◽  
pp. 443-449 ◽  
Author(s):  
Stephen C. Porter ◽  
Zhou Weijian

AbstractEighteen radiocarbon-dated eolian and paleosol profiles within a 1500-km-long belt along the arid to semi-arid transition zone of north-central China record variations in the extent and strength of the East Asian summer monsoon during the Holocene. Dated paleosols and peat layers represent intervals when the zone was dominated by a mild, moist summer monsoon climate that favored pedogenesis and peat accumulation. Brief intervals of enhanced eolian activity that resulted in the deposition of loess and eolian sand were times when strengthened winter monsoon conditions produced a colder, drier climate. The monsoon variations correlate closely with variations in North Atlantic drift-ice tracers that represent episodic advection of drift ice and cold polar surface water southward and eastward into warmer subpolar water. The correspondence of these records over the full span of Holocene time implies a close relationship between North Atlantic climate and the monsoon climate of central China.


2013 ◽  
Vol 9 (5) ◽  
pp. 2085-2099 ◽  
Author(s):  
R. Zhang ◽  
Q. Yan ◽  
Z. S. Zhang ◽  
D. Jiang ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. Based on simulations with 15 climate models in the Pliocene Model Intercomparison Project (PlioMIP), the regional climate of East Asia (focusing on China) during the mid-Pliocene is investigated in this study. Compared to the pre-industrial, the multi-model ensemble mean (MMM) of all models shows the East Asian summer winds (EASWs) largely strengthen in monsoon China, and the East Asian winter winds (EAWWs) strengthen in south monsoon China but slightly weaken in north monsoon China in the mid-Pliocene. The MMM of all models also illustrates a warmer and wetter mid-Pliocene climate in China. The simulated weakened mid-Pliocene EAWWs in north monsoon China and intensified EASWs in monsoon China agree well with geological reconstructions. However, there is a large model–model discrepancy in simulating mid-Pliocene EAWW, which should be further addressed in the future work of PlioMIP.


Sign in / Sign up

Export Citation Format

Share Document