Records of biomass burning in tropical ecosystems: linking biotic and climatic changes in East Africa over the last 4000 years

2012 ◽  
Vol 279-280 ◽  
pp. 95
Author(s):  
Daniele Colombaroli
2018 ◽  
Author(s):  
H. Langley DeWitt ◽  
Jimmy Gasore ◽  
Maheswar Rupakheti ◽  
Katherine E. Potter ◽  
Ronald G. Prinn ◽  
...  

Abstract. Air pollution is still largely unstudied in sub-Saharan Africa, resulting in a gap in scientific understanding of emissions, atmospheric processes, and impacts of air pollutants in this region. The Rwanda Climate Observatory, a joint partnership between MIT and the government of Rwanda, has been measuring ambient concentrations of key long-lived greenhouse gases and short-lived climate-forcing pollutants (CO2, CO, CH4, BC, O3) with state-of-the-art instruments on the summit of Mt. Mugogo (1.586° S, 29.566° E, 2590 m above sea level) since May 2015. Rwanda is a small, mountainous, and densely populated country in equatorial East Africa, currently undergoing rapid development but still at less than 20 % urbanization. The position and meteorology of Rwanda is such that the emissions transported from both the northern and southern African biomass burning seasons affect BC, CO, and O3 concentrations in Rwanda. Black carbon concentrations during Rwanda's two dry seasons, which coincide with the two biomass burning seasons, are higher at Mt. Mugogo than in major European cities. Higher BC baseline concentrations at Mugogo are loosely correlated with fire radiative power data for the region acquired with MODIS satellite instrument. Spectral aerosol absorption measured with a dual-spot Aethalometer also varies in different seasons, likely due to change in types of fuel burned and direction of pollution transport to the site. Ozone concentration was found to be higher in air masses from southern Africa than from northern Africa during their respective biomass burning seasons. These higher ozone concentration in air masses from the south could be indicative of more anthropogenic emissions mixed with the biomass burning emissions from southern Africa as Rwanda is downwind of major East African capital cities in this season. During the rainy season, local emitting activities (e.g., cooking, transportation, trash burning) remain steady, regional biomass burning is low, and transport distances are shorter as rainout of pollution occurs regularly. Thus local pollution at Mugogo can be estimated during this time period. Understanding and quantification of the percent contributions of regional and local emissions is essential to guide policy in the region. Our measurements indicate that air pollution is a current and growing problem in equatorial East Africa that deserves immediate attention.


1932 ◽  
Vol 69 (5) ◽  
pp. 193-205 ◽  
Author(s):  
F. J. Richards ◽  
L. A. Cammiade ◽  
M. C. Burkitt

HUMAN artifacts can often be very useful to the geologist. When they occur in sufficient numbers and are characteristic, prehistorians can be definite in assigning the industries to a certain culture or cultures, and they can then be utilized by the geologist in the same way as are fossils. In Europe during a part of Quaternary times Lower Palaeolithic cultures flourished. Now Quaternary times in Europe can, of course, be readily subdivided into glacial and interglacial periods, but these naturally did not occur further south. In East Africa geological evidence has been adduced to show that intense pluvial periods took the place of our European glaciations, while during the interglacial phases the African areas suffered from arid conditions. Lower Palaeolithic industries are found at certain levels in East Africa and they enable the geologist to correlate the East African and European sequences. South-East India (Madras) is also not an area where glaciations ever occurred: but, we ask, can geological evidence be adduced to demonstrate climatic changes corresponding to those found to have occurred in East Africa ? Lower Palaeolithic industries occur in great numbers in South-East India; whereas most of them have been merely collected from the surface, and are therefore useless for the purposes of exact dating, a number of finds in situ in definite layers have been made, and as in East Africa these can be used as datum lines for correlating purposes.


2012 ◽  
Vol 12 (11) ◽  
pp. 28661-28703 ◽  
Author(s):  
S. L. Mkoma ◽  
K. Kawamura ◽  
P. Fu

Abstract. Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.2±6.4 μg m−3 and 47±8.2 μg m−3 in wet season, and 39.1±9.8 μg m−3 and 61.4±19.2 μg m−3 in dry season, respectively. Total carbon (TC) accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42−) in PM2.5 and, sodium (Na+) and SO42− in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9–4.2% for PM2.5 and 3.5–3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.


ZooKeys ◽  
2019 ◽  
Vol 840 ◽  
pp. 1-20
Author(s):  
Nicholas Wei Liang Yap ◽  
Ria Tan ◽  
Clara Lei Xin Yong ◽  
Koh Siang Tan ◽  
Danwei Huang

Despite the ubiquity of sea anemones (Cnidaria: Actiniaria) in tropical ecosystems, our understanding of their biodiversity and taxonomy is limited. Here we re-establish the identity of an intertidal zooxanthellate species, Phymanthuspinnulatus Martens in Klunzinger, 1877. Originally described from a single preserved specimen in the Berlin Museum by CB Klunzinger, his brief footnote lacked crucial details to positively identify the species. Our redescription is based on more than 50 living individuals of P.pinnulatus collected from its type locality, Singapore. These were examined and compared with type materials of the species and its congeners. Specimens of P.pinnulatus differ from syntypes of species described as Phymanthuslevis Kwietniewski, 1898 from Indonesia, as well as Phymanthussansibaricus Carlgren, 1900 and Phymanthusstrandesi Carlgren, 1900, both described from East Africa. Phymanthuspinnulatus was encountered on the lower intertidal, among coral rubble and between rocky crevices. It is vibrantly coloured and has 96 marginal tentacles with branching outgrowths along each, resulting in a ‘frilly’ appearance. The anemone has a flat expanded oral disc, with discal tentacles that are inconspicuous and reduced, unlike syntypes of its congeners. Details of its live appearance, musculature, and cnidom are also provided for the first time. Overall, types of cnidae and capsule sizes differ from other known species of Phymanthus documented elsewhere. It is inferred that P.pinnulatus has a wide distribution that extends eastwards from Singapore, as far as Ambon and the Torres Straits. Some individuals reported as Phymanthusmuscosus Haddon and Shackleton, 1893 and Phymanthusbuitendijki Pax, 1924 are probably P.pinnulatus. This morphological analysis provides new insights into the characters used to delimit P.pinnulatus, clarifies its geographical distribution, and contributes to an ongoing revision of the genus Phymanthus.


1947 ◽  
Vol 84 (6) ◽  
pp. 321-333 ◽  
Author(s):  
V. E. Fuchs ◽  
T. T. Paterson

The purpose of this communication is to draw attention to the possible effect of vast and synchronous volcanic eruptions and associated earth-movement, not only on local but on world climate. It is divided into two parts, the first dealing with the volcanic aspect and its particular relation to climatic changes in East Africa, and the second discussing the wider significance of the proposition and the possibly greater effect of orogenic movements on world climate when associated with volcanic episodes.


2014 ◽  
Vol 20 (9) ◽  
pp. 2903-2914 ◽  
Author(s):  
Daniele Colombaroli ◽  
Immaculate Ssemmanda ◽  
Vanessa Gelorini ◽  
Dirk Verschuren
Keyword(s):  

Nature ◽  
1977 ◽  
Vol 267 (5607) ◽  
pp. 137-138 ◽  
Author(s):  
T. E. CERLING ◽  
R. L. HAY ◽  
J. R. O'NEIL

2005 ◽  
Vol 5 (3) ◽  
pp. 3131-3189 ◽  
Author(s):  
I. Trebs ◽  
L. L. Lara ◽  
L. M. M. Zeri ◽  
L. V. Gatti ◽  
P. Artaxo ◽  
...  

Abstract. The input of nitrogen (N) to ecosystems has increased dramatically over the past decades. While total N deposition (wet + dry) has been extensively determined in temperate regions, only very few data sets exist about wet N deposition in tropical ecosystems, and moreover, experimental information about dry N deposition in tropical environments is lacking. In this study we estimate dry and wet deposition of inorganic N for a remote pasture site in the Amazon Basin based on in-situ measurements. The measurements covered the late dry (biomass burning) season, a transition period and the onset of the wet season (clean conditions) (12 September to 14 November 2002, LBA-SMOCC). Ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3), aerosol ammonium (NH4+) and aerosol nitrate (NO3-) were measured in real-time, accompanied by simultaneous (micro-)meteorological measurements. Dry deposition fluxes of NO2 and HNO3 are inferred using the ''big leaf multiple resistance approach'' and particle deposition fluxes are derived using an established empirical parameterization. Bi-directional surface-atmosphere exchange fluxes of NH3 and HONO are estimated by applying a ''canopy compensation point model''. Dry and wet N deposition is dominated by NH3 and NH4+, which is largely the consequence of biomass burning during the dry season. The grass surface appeared to have a strong potential for daytime NH3 (re-)emission, owing to high canopy compensation points, which are related to high surface temperatures and to direct NH3 emissions from cattle excreta. NO2 also significantly accounted for dry N deposition, whereas HNO3, HONO and N-containing aerosol species were only minor contributors. We estimated a total (dry + wet) N deposition of 7.3–9.8 kgN ha-1 yr-1 to the tropical pasture site, whereof 2–4.5 kgN ha-1 yr-1 are attributed to dry N deposition and ~5.3 kgN ha-1 yr-1 to wet N deposition. Our estimate exceeds total (wet + dry) N deposition to tropical ecosystems predicted by global chemistry and transport models by at least factor of two.


Sign in / Sign up

Export Citation Format

Share Document