The nature of technological changes: The Middle Pleistocene stone tool assemblages from Galería and Gran Dolina-subunit TD10.1 (Atapuerca, Spain)

2015 ◽  
Vol 368 ◽  
pp. 92-111 ◽  
Author(s):  
Paula García-Medrano ◽  
Andreu Ollé ◽  
Marina Mosquera ◽  
Isabel Cáceres ◽  
Eudald Carbonell
PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256090
Author(s):  
Paola Villa ◽  
Giovanni Boschian ◽  
Luca Pollarolo ◽  
Daniela Saccà ◽  
Fabrizio Marra ◽  
...  

The use of bone as raw material for implements is documented since the Early Pleistocene. Throughout the Early and Middle Pleistocene bone tool shaping was done by percussion flaking, the same technique used for knapping stone artifacts, although bone shaping was rare compared to stone tool flaking. Until recently the generally accepted idea was that early bone technology was essentially immediate and expedient, based on single-stage operations, using available bone fragments of large to medium size animals. Only Upper Paleolithic bone tools would involve several stages of manufacture with clear evidence of primary flaking or breaking of bone to produce the kind of fragments required for different kinds of tools. Our technological and taphonomic analysis of the bone assemblage of Castel di Guido, a Middle Pleistocene site in Italy, now dated by 40Ar/39Ar to about 400 ka, shows that this general idea is inexact. In spite of the fact that the number of bone bifaces at the site had been largely overestimated in previous publications, the number of verified, human-made bone tools is 98. This is the highest number of flaked bone tools made by pre-modern hominids published so far. Moreover the Castel di Guido bone assemblage is characterized by systematic production of standardized blanks (elephant diaphysis fragments) and clear diversity of tool types. Bone smoothers and intermediate pieces prove that some features of Aurignacian technology have roots that go beyond the late Mousterian, back to the Middle Pleistocene. Clearly the Castel di Guido hominids had done the first step in the process of increasing complexity of bone technology. We discuss the reasons why this innovation was not developed. The analysis of the lithic industry is done for comparison with the bone industry.


2021 ◽  
Author(s):  
Josep M Pares ◽  
Mathieu Duval ◽  
Isidoro Campaña ◽  
José M. Bermúdez de Castro ◽  
Eudald Carbonell

<p>Magnetostratigraphy has proven to be a powerful and versatile method as well the first line of defence for dating sediments. When properly anchored to the Geomagnetic Polarity Time Scale (GPTS), chron boundaries provide a basis for numerical dating by correlating the local magnetostratigraphy to the GPTS. A caveat and intrinsic limitation when anchoring magnetic stratigraphy to the GPTS is that we deal with essentially a binary code, a sequence of normal and reverse polarity zones. To overcome such limitation biostratigraphy or (ideally) numerical (absolute) age dating is required. Unfortunately, numerical dating of sediments is typically hampered by the lack of amenable minerals for the application of standard methods such as Ar-Ar, requiring thus the use of less conventional methods. Burial dating is possible using methods such as Electron Spin Resonance (ESR) on optically bleached quartz grains. Similar to luminescence, ESR is a paleodosimetric method that provides the time elapsed since the last exposure of quartz grains to natural sun light. Cave sediments are particularly amenable for paleodosimetric methods, as sediments are preserved in the dark and the ESR signal should survive over the geologic history of the deposits. On the down side, we date the moment when the quartz grain enters the karst system, not its deposition. If the transit time is too long, this might be an issue and we would be significantly overestimating the true burial age. Caves at Atapuerca (N Spain) hold the richest Quaternary paleontological record in Eurasia, including fossils and lithic tools. Sediments in these caves have been traditionally dated via magnetostratigraphy by identifying the Matuyama-Brunhes reversal (0.78 Ma) thus providing the Lower to Middle Pleistocene boundary. Nevertheless, the appearance of older sediments in the caves required the combination of paleomagnetism with methods such as ESR to interpret older intra-Matuyama Subchrons. In the deepest levels of the Gran Dolina cave, close to the floor of the cavity, a number of short intervals of normal polarity have been identified in the fluviatile sediments belonging to TD1 unit, which we interpret in terms of Subchrons using ESR ages of quartz grains. We will discuss both paleomagnetic data and interpret the magnetic polarity stratigraphy in the view of the ESR ages obtained from the Multiple Centre (MC) approach. </p>


Nature ◽  
2018 ◽  
Vol 565 (7737) ◽  
pp. 82-85 ◽  
Author(s):  
Yue Hu ◽  
Ben Marwick ◽  
Jia-Fu Zhang ◽  
Xue Rui ◽  
Ya-Mei Hou ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6549) ◽  
pp. 1429-1433 ◽  
Author(s):  
Yossi Zaidner ◽  
Laura Centi ◽  
Marion Prévost ◽  
Norbert Mercier ◽  
Christophe Falguères ◽  
...  

Fossils of a Middle Pleistocene (MP) Homo within a well-defined archaeological context at the open-air site of Nesher Ramla, Israel, shed light on MP Homo culture and behavior. Radiometric ages, along with cultural and stratigraphic considerations, suggest that the fossils are 140,000 to 120,000 years old, chronologically overlapping with H. sapiens in western Asia. Lithic analysis reveals that MP Homo mastered stone-tool production technologies, previously known only among H. sapiens and Neanderthals. The Levallois knapping methods they used are indistinguishable from that of concurrent H. sapiens in western Asia. The most parsimonious explanation for such a close similarity is the cultural interactions between these two populations. These findings constitute evidence of contacts and interactions between H. sapiens and MP Homo.


2009 ◽  
Vol 56 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Hugues-Alexandre Blain ◽  
Salvador Bailon ◽  
Gloria Cuenca-Bescós ◽  
Juan Luis Arsuaga ◽  
José Maria Bermúdez de Castro ◽  
...  

2019 ◽  
Vol 535 ◽  
pp. 109365 ◽  
Author(s):  
Julia Galán ◽  
Carmen Núñez-Lahuerta ◽  
Raquel Moya-Costa ◽  
Juan Manuel López-García ◽  
Gloria Cuenca-Bescós

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eleanor M. L. Scerri ◽  
Marine Frouin ◽  
Paul S. Breeze ◽  
Simon J. Armitage ◽  
Ian Candy ◽  
...  

AbstractThe Arabian Peninsula is a critical geographic landmass situated between Africa and the rest of Eurasia. Climatic shifts across the Pleistocene periodically produced wetter conditions in Arabia, dramatically altering the spatial distribution of hominins both within and between continents. This is particularly true of Acheulean hominins, who appear to have been more tethered to water sources than Middle Palaeolithic hominins. However, until recently, chrono-cultural knowledge of the Acheulean of Arabia has been limited to one dated site, which indicated a hominin presence in Marine Isotope Stages (MIS) 7–6. Here, we report the first dated Acheulean site from the Nefud Desert of northern Saudi Arabia, together with palaeoecological evidence for an associated deep, probably fresh-water, lake. The site of An Nasim features varied and often finely flaked façonnage handaxes. Luminescence ages together with geomorphological and palaeoecological evidence indicates that the associated artefacts date to MIS 9. At present, An Nasim represents the oldest yet documented Acheulean sites in Arabia, and adds to a growing picture of regionally diverse stone tool assemblages used by Middle Pleistocene hominins, and likely indicative of repeated population re-entry into the peninsula in wet ‘Green Arabia’ phases.


Sign in / Sign up

Export Citation Format

Share Document