Extensive glaciations between MIS 8 and MIS 5 on the eastern side of the Guliya ice cap, West Kunlun Mountains

Author(s):  
Xuezhen Zeng ◽  
Xiangke Xu ◽  
Chaolu Yi ◽  
Yong Sun ◽  
Jiule Li
2019 ◽  
Vol 159 ◽  
pp. 71-85 ◽  
Author(s):  
Shenghai Li ◽  
Tandong Yao ◽  
Wusheng Yu ◽  
Wei Yang ◽  
Meilin Zhu

1990 ◽  
Vol 14 ◽  
pp. 205-207
Author(s):  
Masayoshi Nakawo ◽  
Yutaka Ageta ◽  
Han Jiankang

Shallow corings and pit studies were carried out in 1987 on the Chongce Ice Cap in the West Kunlun Mountains which lie along the southern edge of the Taklamakan Desert. Stratigraphic observations, as well as measurements of insoluble particles, chemical constituents and liquid conductivity, on the core and pit samples allowed identification of annual layers, although visible dirt layers are not always annual signals. A vertical profile of stable isotope content showed a periodic variation near the surface, strongly attenuated with depth.


1990 ◽  
Vol 14 ◽  
pp. 205-207 ◽  
Author(s):  
Masayoshi Nakawo ◽  
Yutaka Ageta ◽  
Han Jiankang

Shallow corings and pit studies were carried out in 1987 on the Chongce Ice Cap in the West Kunlun Mountains which lie along the southern edge of the Taklamakan Desert. Stratigraphic observations, as well as measurements of insoluble particles, chemical constituents and liquid conductivity, on the core and pit samples allowed identification of annual layers, although visible dirt layers are not always annual signals. A vertical profile of stable isotope content showed a periodic variation near the surface, strongly attenuated with depth.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Guang Li Yang ◽  
Shu Gui Hou ◽  
Ri Le Baoge ◽  
Zhi Guo Li ◽  
Hao Xu ◽  
...  

Author(s):  
J Zhang ◽  
B H Fu ◽  
L M Wang ◽  
A Maimaiti ◽  
Y X Ma ◽  
...  

2001 ◽  
Vol 4 (4) ◽  
pp. 843-844 ◽  
Author(s):  
Wang Zong-Qi ◽  
Chun-Fa Jiang ◽  
Quan-Ren Yan ◽  
Zhen Yan

2020 ◽  
Vol 115 (7) ◽  
pp. 1559-1588
Author(s):  
Bang-Lu Zhang ◽  
Chang-Le Wang ◽  
Leslie J. Robbins ◽  
Lian-Chang Zhang ◽  
Kurt O. Konhauser ◽  
...  

Abstract The Upper Carboniferous Ortokarnash manganese ore deposit in the West Kunlun orogenic belt of the Xinjiang province in China is hosted in the Kalaatehe Formation. The latter is composed of three members: (1) the 1st Member is a volcanic breccia limestone, (2) the 2nd Member is a sandy limestone, and (3) the 3rd Member is a dark gray to black marlstone containing the manganese carbonate mineralization, which, in turn, is overlain by sandy and micritic limestone. This sequence represents a single transgression-regression cycle, with the manganese deposition occurring during the highstand systems tract. Geochemical features of the rare earth elements (REE+Y) in the Kalaatehe Formation suggest that both the manganese ore and associated rocks were generally deposited under an oxic water column with Post-Archean Australian Shale (PAAS)-normalized REE+Y patterns displaying characteristics of modern seawater (e.g., light REE depletion and negative Ce anomalies). The manganese ore is dominated by fine-grained rhodochrosite (MnCO3), dispersed in Mn-rich silicates (e.g., friedelite and chlorite), and trace quantities of alabandite (MnS) and pyrolusite (MnO2). The replacement of pyrolusite by rhodochrosite suggests that the initial manganese precipitates were Mn(IV)-oxides. Precipitation within an oxic water column is supported by shale-normalized REE+Y patterns from the carbonate ores that are characterized by large positive Ce (>3.0) anomalies, negative Y (~0.7) anomalies, low Y/Ho ratios (~20), and a lack of fractionation between the light and heavy rare earth elements ((Nd/Yb)PAAS ~0.9). The manganese carbonate ores are also 13C-depleted, further suggesting that the Mn(II) carbonates formed as a result of Mn(III/IV)-oxide reduction during burial diagenesis.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2246 ◽  
Author(s):  
Ma ◽  
Yan ◽  
Zhao ◽  
Kundzewicz

In recent years, the climate in the arid region of Northwest China has become warmer and wetter; however, glaciers in the north slope of the West Kunlun Mountains (NSWKM) show no obvious recession, and river flow is decreasing or stable. This contrasts with the prevalent response of glaciers to climate change, which is recession and initial increase in glacier discharge followed by decline as retreat continues. We comparatively analyzed multi-timescale variation in temperature–precipitation–snow cover-runoff in the Yarkant River Basin (YRK), Karakax River Basin (KRK), Yurungkax River Basin (YUK), and Keriya River Basin (KRY) in the NSWKM. The Mann–Kendall trend and the mutation–detection method were applied to data obtained from an observation station over the last 60 years (1957–2017) and MODIS snow data (2001–2016). NSWKM temperature and precipitation have continued to increase for nearly 60 years at a mean rate of 0.26 °C/decade and 5.50 mm/decade, respectively, with the most obvious trend (R2 > 0.82) attributed to the KRK and YUK. Regarding changes in the average snow-cover fraction (SCF): YUK (SCF = 44.14%) > YRK (SCF = 38.73%) > KRY (SCF = 33.42%) > KRK (SCF = 33.40%). Between them, the YRK and YUK had decreasing SCA values (slope < −15.39), while the KRK and KRY had increasing SCA values (slope > 1.87). In seasonal variation, the SCF of the three of the basins reaches the maximum value in spring, with the most significant performance in YUK (SCF = 26.4%), except for YRK where SCF in spring was lower than that in winter (−2.6%). The runoff depth of all river basins presented an increasing trend, with the greatest value appearing in the YRK (5.78 mm/decade), and the least value in the YUK (1.58 mm/decade). With the runoff response to climate change, temperature was the main influencing factor of annual and monthly (summer) runoff variations in the YRK, which is consistent with the runoff-generation rule of rivers in arid areas, which mainly rely on ice and snow melt for water supply. However, this rule was not consistent for the YUK and KRK, as it was disturbed by other factors (e.g., slope and slope direction) during runoff generation, resulting in disruptions of their relationship with runoff. This research promotes the study of the response of cold and arid alpine regions to global change and thus better serve regional water resources management.


1992 ◽  
Vol 16 ◽  
pp. 79-84 ◽  
Author(s):  
Liu Chaohai ◽  
Li Shijie ◽  
Shi Yafeng

There appear to have been several important glacial advances on the southern slope of the west Kunlun mountains, Tibetan Plateau, since 45 000 a BP. Based on the record of alternating till and lacustrine sediments and 14C determinations, these advances are dated to 23 000–16 000, 8500–8000, and 4000–2500 a BP, and to the 16th–19th century AD, with regional variations occurring during each of the advances. The glaciation of 23 000–16 000 a BP is equivalent to the last glacial maximum (LGM) and its scope and scale were much larger than any of the others. Lake changes are a response to both tectonic uplift of the plateau and global climatic change. With regard to the latter, both changes in precipitation and changes in the extent of glaciation can affect lake levels. High lake levels occurred during interstadial conditions between 40 000 and 30 000 a BP, when the area experienced a relatively warm and humid climate, and during the LGM, between 21 000 and 15 000 a BP. During the Holocene, lakes have been shrinking gradually, coincident with the dry climate of this period of time.


Sign in / Sign up

Export Citation Format

Share Document