Orbitally driven evolution of Asian monsoon and stable water isotope ratios during the Holocene: Isotope-enabled climate model simulations and proxy data comparisons

2021 ◽  
Vol 252 ◽  
pp. 106743
Author(s):  
Thejna Tharammal ◽  
Govindasamy Bala ◽  
André Paul ◽  
David Noone ◽  
Astrid Contreras-Rosales ◽  
...  
2014 ◽  
Vol 10 (3) ◽  
pp. 2293-2353 ◽  
Author(s):  
A. Dallmeyer ◽  
M. Claussen ◽  
N. Fischer ◽  
K. Haberkorn ◽  
S. Wagner ◽  
...  

Abstract. The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.


2015 ◽  
Vol 11 (2) ◽  
pp. 305-326 ◽  
Author(s):  
A. Dallmeyer ◽  
M. Claussen ◽  
N. Fischer ◽  
K. Haberkorn ◽  
S. Wagner ◽  
...  

Abstract. The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. Rather they indicate locally inhomogeneous rainfall changes and show that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.


2012 ◽  
Vol 8 (1) ◽  
pp. 263-320 ◽  
Author(s):  
A. Hind ◽  
A. Moberg ◽  
R. Sundberg

Abstract. A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records is developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance changes and greenhouse gas concentrations. Two statistical tests are formulated. Firstly, a preliminary test to establish whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The new methods are applied in a pseudo-proxy experiment. Here, a set of previously published millennial forced model simulations, including both "low" and "high" solar radiative forcing histories together with other common forcings, were used to define "true" target temperatures as well as pseudo-proxy and pseudo-instrumental series. The pseudo-proxies were created to reflect current proxy locations and noise levels, where it was found that the low and high solar full-forcing simulations could be distinguished when the latter were used as targets. When the former were used as targets, a greater number of proxy locations were needed to make this distinction. It was also found that to improve detectability of the low solar simulations, increasing the signal-to-noise ratio was more efficient than increasing the spatial coverage of the proxy network. In the next phase of the work, we will apply these methods to real proxy and instrumental data, with the aim to distinguish which of the two solar forcing histories is most compatible with the observed/reconstructed climate.


2020 ◽  
Vol 16 (4) ◽  
pp. 1325-1346
Author(s):  
Jessica A. Badgeley ◽  
Eric J. Steig ◽  
Gregory J. Hakim ◽  
Tyler J. Fudge

Abstract. Reconstructions of past temperature and precipitation are fundamental to modeling the Greenland Ice Sheet and assessing its sensitivity to climate. Paleoclimate information is sourced from proxy records and climate-model simulations; however, the former are spatially incomplete while the latter are sensitive to model dynamics and boundary conditions. Efforts to combine these sources of information to reconstruct spatial patterns of Greenland climate over glacial–interglacial cycles have been limited by assumptions of fixed spatial patterns and a restricted use of proxy data. We avoid these limitations by using paleoclimate data assimilation to create independent reconstructions of mean-annual temperature and precipitation for the last 20 000 years. Our method uses oxygen isotope ratios of ice and accumulation rates from long ice-core records and extends this information to all locations across Greenland using spatial relationships derived from a transient climate-model simulation. Standard evaluation metrics for this method show that our results capture climate at locations without ice-core records. Our results differ from previous work in the reconstructed spatial pattern of temperature change during abrupt climate transitions; this indicates a need for additional proxy data and additional transient climate-model simulations. We investigate the relationship between precipitation and temperature, finding that it is frequency dependent and spatially variable, suggesting that thermodynamic scaling methods commonly used in ice-sheet modeling are overly simplistic. Our results demonstrate that paleoclimate data assimilation is a useful tool for reconstructing the spatial and temporal patterns of past climate on timescales relevant to ice sheets.


2012 ◽  
Vol 8 (2) ◽  
pp. 1005-1056 ◽  
Author(s):  
G. Lohmann ◽  
M. Pfeiffer ◽  
T. Laepple ◽  
G. Leduc ◽  
J.-H. Kim

Abstract. We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived sea surface temperature (SST) estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 yr. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We tested if such discrepancies can be caused by too simplistic interpretations of the proxy data. We therefore considered the additional environmental factor changes in the planktonic organisms' habitat depth and a time-shift in the recording season to diagnose whether invoking those environmental factors can help reconciling the proxy records and the model simulations. We find that invoking shifts in the living season and habitat depth can remove some of the model-data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modeled temperature trends are set up to allow drastic shifts in the ecological behavior of planktonic organisms, they do not capture the full range of reconstructed SST trends. These findings challenge the quantitative comparability of climate model sensitivity and reconstructed temperature trends from proxy data.


2012 ◽  
Vol 8 (4) ◽  
pp. 1339-1353 ◽  
Author(s):  
R. Sundberg ◽  
A. Moberg ◽  
A. Hind

Abstract. A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.


Science ◽  
2019 ◽  
Vol 365 (6459) ◽  
pp. eaax8474 ◽  
Author(s):  
Paul J. Valdes ◽  
Ding Lin ◽  
Alex Farnsworth ◽  
Robert A. Spicer ◽  
Shi-Hu Li ◽  
...  

Botsyun et al. (Research Articles, 1 March 2019, eaaq1436) have suggested that the Tibetan Plateau was low (substantially less than 3000 meters) during the Eocene, based on a comparison of oxygen isotope proxy data with isotope-enabled climate model simulations. However, we contend that their conclusions are flawed as the result of a number of failings of both the modeling and the data comparison.


Sign in / Sign up

Export Citation Format

Share Document