Effects of radiation scatter exposure on electrometer dose assessment in orthovoltage radiotherapy

2011 ◽  
Vol 46 (4) ◽  
pp. 436-439 ◽  
Author(s):  
Martin J. Butson ◽  
Peter K.N. Yu ◽  
Tsang Cheung ◽  
B.M. Oborn
2020 ◽  
Vol 61 (6) ◽  
pp. 895-902
Author(s):  
Dong-Yeon Lee ◽  
Yong-Uk Kye ◽  
Hyo-Jin Kim ◽  
Jeung-Kee Kim ◽  
Yeong-Rok Kang

ABSTRACT In this study, we evaluated the effect of radiation dose on gonads during paediatric kidney nuclear medicine tests. Using Monte Carlo simulations, the distribution and effects of radiation were physically evaluated by displaying the distribution path of the source in the human body over time. In particular, the evaluation of doses in children, who are sensitive to radiation during nuclear medicine tests that use internal exposure among several types of medical exposures, was conducted to obtain data for the management of medical exposures. Our results indicated that under normal kidney function, the dose received by the target kidney was 0.430 mGy/mCi, which is ~6% higher than the dose suggested by the International Commission on Radiation Protection (ICRP). Furthermore, when kidney function was compromised, the dose estimated was 0.726 mGy/mCi, which is ~2% lower than the dose suggested by the ICRP. In the male and female gonads, namely the testicles and ovaries, the doses received were 0.359 mGy/mCi and 0.394 mGy/mCi, respectively, under normal kidney function. Similarly, under abnormal kidney function, the doses ranged from 0.187 to 0.353 mGy/mCi and 0.238 to 0.388 mGy/mCi in the male and female gonads, respectively.


1999 ◽  
Vol 47 (6) ◽  
pp. 909 ◽  
Author(s):  
Bisun Datt

The spectral reflectance of leaves from several Eucalyptus species was measured over the 400–2500 nm wavelengths with a laboratory spectroradiometer. The relationship of reflectance with the gravimetric water content and equivalent water thickness (EWT) of the leaves was analysed. The results showed that EWT was strongly correlated with reflectance in several wavelength regions. No significant correlations could be obtained between reflectance and gravimetric water content. It was also possible to confirm theoretically that reflectance changes of leaves could be directly linked to changes in EWT but not to changes in gravimetric water content. Several existing reflectance indices were evaluated for estimation of leaf water content and some new indices were developed and tested. Two semi-empirical indices developed in this study, (R850 - R2218)/(R850 - R1928) and (R850 - R1788)/(R850 - R1928), were found to show significantly stronger correlations with EWT than all other indices tested. It was also shown that these new indices were least sensitive to the effects of radiation scatter. The indices (R850 - R2218)/(R850 - R1928) and (R850 - R1788)/(R850 - R1928) are therefore proposed as two new indices for the remote estimation of vegetation water content.


2021 ◽  
Author(s):  
Yoshinori Tanabe ◽  
Toshie Iseri ◽  
Ryouta Onizuka ◽  
Takayuki Ishida ◽  
Hidetoshi Eto ◽  
...  

Abstract Accurate dose assessment during animal radiotherapy is beneficial for veterinary medicine and medical education. We evaluated the dose distributions of kilovoltage X-ray orthovoltage radiotherapy and created a dog skull water phantom for animal-specific radiotherapy. EGSnrc-based BEAMnrc and DOSXYZnrc codes were used to simulate orthovoltage dose distributions. At 10, 20, 30, 40, 50 and 80 mm in a water phantom, depth dose was measured with waterproof Farmer dosimetry chambers and the diagonal off-axis ratio was measured with Gafchromic EBT3 film to simulate orthovoltage dose distributions. Energy differences between orthovoltage and linear accelerated radiotherapy were assessed with a heterogeneous bone and tissue virtual phantom. The animal-specific phantom for radiotherapy quality assurance was created from CT scans of a dog and printed with a three-dimensional printer using polyamide 12 nylon, with insertion points for dosimetry chambers and Gafchromic EBT3 film. Monte Carlo simulated and measured dose distributions differed by no more than 2.0% along the central axis up to a depth of 80 mm. The anode heel effect occurred in shallow areas. The orthovoltage radiotherapy percentage depth dose in bone was >40%. Build-up was >40%, with build-down after bone exit, whereas linear accelerator radiotherapy absorption changed little in the bone. A highly water-impermeable, animal-specific dog skull water phantom could be created to evaluate dose distribution.Animal-specific water phantoms and Monte Carlo simulated pre-treatment radiotherapy is useful quality assurance for orthovoltage radiotherapy and yields a visually familiar phantom that will be useful for veterinary medical education.


1999 ◽  
Vol 47 (6) ◽  
pp. 877 ◽  
Author(s):  
Laurie E. Twigg ◽  
Geoffrey R. Wright ◽  
Michelle D. Potts

The spectral reflectance of leaves from several Eucalyptus species was measured over the 400–2500 nm wavelengths with a laboratory spectroradiometer. The relationship of reflectance with the gravimetric water content and equivalent water thickness (EWT) of the leaves was analysed. The results showed that EWT was strongly correlated with reflectance in several wavelength regions. No significant correlations could be obtained between reflectance and gravimetric water content. It was also possible to confirm theoretically that reflectance changes of leaves could be directly linked to changes in EWT but not to changes in gravimetric water content. Several existing reflectance indices were evaluated for estimation of leaf water content and some new indices were developed and tested. Two semi-empirical indices developed in this study, (R850 - R2218)/(R850 - R1928) and (R850 - R1788)/(R850 - R1928), were found to show significantly stronger correlations with EWT than all other indices tested. It was also shown that these new indices were least sensitive to the effects of radiation scatter. The indices (R850 - R2218)/(R850 - R1928) and (R850 - R1788)/(R850 - R1928) are therefore proposed as two new indices for the remote estimation of vegetation water content.


Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Judy Ju-Hu Chiang ◽  
Robert Kuo-Cheng Chen

Germ cells from the rice stem borer Chilo suppresalis, were examined by light and electron microscopy. Damages to organelles within the germ cells were observed. The mitochondria, which provide the cell with metabolic energy, were seen to disintegrate within the germ cell. Lysosomes within the germ cell were also seen to disintegrate. The subsequent release of hydrolytic enzymesmay be responsible for the destruction of organelles within the germ cell. Insect spermatozoa were seen to lose the ability to move because of radiation treatment. Damage to the centrioles, one of which is in contact with the tail, may be involved in causing sperm immobility.


Sign in / Sign up

Export Citation Format

Share Document