scholarly journals Analysis on the effect of parental origin of translocation and predictors for obtaining an euploid embryo in balanced translocation carriers

Author(s):  
Jing Tong ◽  
Yichao Niu ◽  
Anran Wan ◽  
Ting Zhang
2016 ◽  
Vol 149 (4) ◽  
pp. 247-257
Author(s):  
Yo Niida ◽  
Hitoshi Sato ◽  
Mamoru Ozaki ◽  
Masatsune Itoh ◽  
Kanju Ikeno ◽  
...  

Less than 1% of the cases with Angelman syndrome (AS) are caused by chromosomal rearrangements. This category of AS is not well defined and may manifest atypical phenotypes. Here, we report a girl with AS due to der(13)t(13;15)(q14.1;q12)mat. SNP array detected the precise deletion/duplication points and the parental origin of the 15q deletion. Multicolor FISH confirmed a balanced translocation t(13;15)(q14.1;q12) in her mother. Her facial appearance showed some features of dup(13)(pter→q14). Also, she lacked the most characteristic and unique behavioral symptoms of AS, i.e., frequent laughter, happy demeanor, and easy excitability. A review of the literature indicated that AS cases caused by chromosomal rearrangements can be classified into 2 major categories and 4 groups. The first category is paternal uniparental disomy 15, which is subdivided into isodisomy by de novo rob(15;15) and heterodisomy caused by paternal translocation. The second category is the deletion of the AS locus due to maternal reciprocal translocation, which is subdivided into 2 groups associated with partial monosomy by 3:1 segregation and partial trisomy by adjacent-2 segregation. Classification into these categories facilitates the understanding of the mechanisms of chromosomal rearrangements and helps in accurate diagnosis and genetic counseling of these rare forms of AS.


Diabetes ◽  
1994 ◽  
Vol 43 (12) ◽  
pp. 1462-1468 ◽  
Author(s):  
S. C. Bain ◽  
B. R. Rowe ◽  
A. H. Barnett ◽  
J. A. Todd

2020 ◽  
Vol 160 (11-12) ◽  
pp. 688-697
Author(s):  
Sharmila Ghosh ◽  
Candice F. Carden ◽  
Rytis Juras ◽  
Mayra N. Mendoza ◽  
Matthew J. Jevit ◽  
...  

We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1219-1224
Author(s):  
Lara A Underkoffler ◽  
Laura E Mitchell ◽  
A Russell Localio ◽  
Shannon M Marchegiani ◽  
Justin Morabito ◽  
...  

Abstract A Robertsonian translocation results in a metacentric chromosome produced by the fusion of two acrocentric chromosomes. Rb heterozygous mice frequently generate aneuploid gametes and embryos, providing a good model for studying meiotic nondisjunction. We intercrossed mice heterozygous for a (7.18) Robertsonian translocation and performed molecular genotyping of 1812 embryos from 364 litters with known parental origin, strain, and age. Nondisjunction events were scored and factors influencing the frequency of nondisjunction involving chromosomes 7 and 18 were examined. We concluded the following: The frequency of nondisjunction among 1784 embryos (3568 meioses) was 15.9%.Nondisjunction events were distributed nonrandomly among progeny. This was inferred from the distribution of the frequency of trisomics and uniparental disomics (UPDs) among all litters.There was no evidence to show an effect of maternal or paternal age on the frequency of nondisjunction.Strain background did not play an appreciable role in nondisjunction frequency.The frequency of nondisjunction for chromosome 18 was significantly higher than that for chromosome 7 in males.The frequency of nondisjunction for chromosome 7 was significantly higher in females than in males. These results show that molecular genotyping provides a valuable tool for understanding factors influencing meiotic nondisjunction in mammals.


Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1283-1295 ◽  
Author(s):  
Atsushi Mochizuki ◽  
Yasuhiko Takeda ◽  
Yoh Iwasa

Abstract In some mammalian genes, the paternally and maternally derived alleles are expressed differently: this phenomenon is called genomic imprinting. Here we study the evolution of imprinting using multivariate quantitative genetic models to examine the feasibility of the genetic conflict hypothesis. This hypothesis explains the observed imprinting patterns as an evolutionary outcome of the conflict between the paternal and maternal alleles. We consider the expression of a zygotic gene, which codes for an embryonic growth factor affecting the amount of maternal resources obtained through the placenta. We assume that the gene produces the growth factor in two different amounts depending on its parental origin. We show that genomic imprinting evolves easily if females have some probability of multiple partners. This is in conflict with the observation that not all genes controlling placental development are imprinted and that imprinting in some genes is not conserved between mice and humans. We show however that deleterious mutations in the coding region of the gene create selection against imprinting.


Author(s):  
Diana Massalska ◽  
Katarzyna Ozdarska ◽  
Tomasz Roszkowski ◽  
Julia Bijok ◽  
Anna Kucińska-Chahwan ◽  
...  

Abstract Purpose To establish the distribution of diandric and digynic triploidy depending on gestational age. Methods 107 triploid samples tested prospectively in a single genetic department during a four-year period were analyzed for parental origin of triploidy by Quantitative Fluorescent Polymerase Chain Reaction (QF-PCR) (n=95) with the use of matching parental samples or by MS-MLPA (n=12), when parental samples were unavailable. Tested pregnancies were divided into three subgroups with regard to the gestational age at spontaneous pregnancy loss: <11 gestational weeks, 11–14 gestational weeks, and >14 gestational weeks. Results Diandric triploidy constituted overall 44.9% (46.5% in samples miscarried <11 gestational weeks, 64.3% in samples miscarried between 11 and 14 gestational weeks, and 27.8% in pregnancies which survived >14 gestational weeks). Conclusions The distribution of diandric and digynic triploidy depends on gestational age. The majority of diandric triploid pregnancies is lost in the first trimester of pregnancy. In the second trimester, diandric cases are at least twice less frequent than digynic ones.


2021 ◽  
Vol 252-253 ◽  
pp. S13
Author(s):  
Marilena Melas ◽  
Carol Deeg ◽  
Elizabeth Hamelberg ◽  
Mollie Haughn ◽  
Hannah Kennedy ◽  
...  

2021 ◽  
Author(s):  
Danilo Cimadomo ◽  
Antonio Capalbo ◽  
Lisa Dovere ◽  
Luisa Tacconi ◽  
Daria Soscia ◽  
...  

Abstract STUDY QUESTION Is there an association between patients’ reproductive history and the mean euploidy rates per biopsied blastocysts (m-ER) or the live birth rates (LBRs) per first single vitrified-warmed euploid blastocyst transfers? SUMMARY ANSWER Patients’ reproductive history (as annotated during counselling) showed no association with the m-ER, but a lower LBR was reported after euploid blastocyst transfer in women with a history of repeated implantation failure (RIF). WHAT IS KNOWN ALREADY Several studies have investigated the association between the m-ER and (i) patients’ basal characteristics, (ii) ovarian stimulation strategy and dosage, (iii) culture media and conditions, and (iv) embryo morphology and day of full blastocyst development. Conversely, the expected m-ER due to women’s reproductive history (previous live births (LBs), miscarriages, failed IVF cycles and transfers, and lack of euploid blastocysts among prior cohorts of biopsied embryos) still needs investigations. Yet, this information is critical to counsel new patients about a first cycle with preimplantation genetic testing for aneuploidy (PGT-A), but even more so after former adverse outcomes to prevent treatment drop-out. STUDY DESIGN, SIZE, DURATION This observational study included all patients undergoing a comprehensive chromosome testing (CCT)-based PGT-A cycle with at least one biopsied blastocyst in the period April 2013-December 2019 at a private IVF clinic (n = 2676 patients undergoing 2676 treatments and producing and 8151 blastocysts). m-ER were investigated according to women’s reproductive history of LBs: no/≥1, miscarriages: no/1/&gt;1; failed IVF cycles: no/1/2/&gt;2, and implantation failures after previous transfers: no/1/2/&gt;2. Among the 2676 patients included in this study, 440 (16%) had already undergone PGT-A before the study period; the data from these patients were further clustered according to the presence or absence of euploid embryo(s) in their previous cohort of biopsied blastocysts. The clinical outcomes per first single vitrified-warmed euploid blastocyst transfers (n =1580) were investigated according to the number of patients’ previous miscarriages and implantation failures. PARTICIPANTS/MATERIALS, SETTING, METHODS The procedures involved in this study included ICSI, blastocyst culture, trophectoderm biopsy without hatching in Day 3, CCT-based PGT-A without reporting segmental and/or putative mitotic (or mosaic) aneuploidies and single vitrified-warmed euploid blastocyst transfer. For statistical analysis, Mann–Whitney U or Kruskal–Wallis tests, as well as linear regressions and generalised linear models among ranges of maternal age at oocyte retrieval were performed to identify significant differences for continuous variables. Fisher’s exact tests and multivariate logistic regression analyses were instead used for categorical variables. MAIN RESULTS AND THE ROLE OF CHANCE Maternal age at oocyte retrieval was the only variable significantly associated with the m-ER. We defined five clusters (&lt;35 years: 66 ± 31%; 35–37 years: 58 ± 33%; 38–40 years: 43 ± 35%; 40–42 years: 28 ± 34%; and &gt;42 years: 17 ± 31%) and all analyses were conducted among them. The m-ER did not show any association with the number of previous LBs, miscarriages, failed IVF cycles or implantation failures. Among patients who had already undergone PGT-A before the study period, the m-ER did not associate with the absence (or presence) of euploid blastocysts in their former cohort of biopsied embryos. Regarding clinical outcomes of the first single vitrified-warmed euploid blastocyst transfer, the implantation rate was 51%, the miscarriage rate was 14% and the LBR was 44%. This LBR was independent of the number of previous miscarriages, but showed a decreasing trend depending on the number of previous implantation failures, reaching statistical significance when comparing patients with &gt;2 failures and patients with no prior failure (36% versus 47%, P &lt; 0.01; multivariate-OR adjusted for embryo quality and day of full blastocyst development: 0.64, 95% CI 0.48–0.86, P &lt; 0.01). No such differences were shown for previous miscarriage rates. LIMITATIONS, REASONS FOR CAUTION The sample size for treatments following a former completed PGT-A cycle should be larger in future studies. The data should be confirmed from a multicentre perspective. The analysis should be performed also in non-PGT cycles and/or including patients who did not produce blastocysts, in order to investigate a putative association between women’s reproductive history with outcomes other than euploidy and LBRs. WIDER IMPLICATIONS OF THE FINDINGS These data are critical to counsel infertile couples before, during and after a PGT-A cycle, especially to prevent treatment discontinuation due to previous adverse reproductive events. Beyond the ‘maternal age effect’, the causes of idiopathic recurrent pregnancy loss (RPL) and RIF are likely to be endometrial receptivity and selectivity issues; transferring euploid blastocysts might reduce the risk of a further miscarriage, but more information beyond euploidy are required to improve the prognosis in case of RIF. STUDY FUNDING/COMPETING INTEREST(S) No funding was received and there are no competing interests. TRIAL REGISTRATION NUMBER N/A.


Sign in / Sign up

Export Citation Format

Share Document