Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25)

2020 ◽  
Vol 160 (11-12) ◽  
pp. 688-697
Author(s):  
Sharmila Ghosh ◽  
Candice F. Carden ◽  
Rytis Juras ◽  
Mayra N. Mendoza ◽  
Matthew J. Jevit ◽  
...  

We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.

2013 ◽  
Vol 25 (1) ◽  
pp. 164
Author(s):  
H. J. Oh ◽  
M. J. Kim ◽  
G. A. Kim ◽  
J. Choi ◽  
E. J. Park ◽  
...  

Somatic cell nuclear transfer (SCNT) in assisted reproductive technologies has been considered for the conservation of valuable or endangered animals. Dogs that were originally bred for hunting, such as beagles, have an exceptional ability to detect a particular smell from many others. For that reason, the beagles have been used to detect quarantine risk items from a wide range of goods in assorted luggage without scaring or disrupting the passengers. Though very useful and highly in need, elite quarantine sniffing beagles with excellent abilities are rare; much time, effort, and money are required in producing them. Here, we have applied SCNT for propagation of elite quarantine sniffing dogs to save time and economic burden. Ear fibroblasts from a 10-year-old adult male elite quarantine sniffing beagle were isolated and cultured in vitro as donor cells. For SCNT, in vivo-matured oocytes, obtained by flushing the uterine tubes of oocyte donors (mixed breed), were used. The oocytes were enucleated, microinjected with donor cells, fused by electrical stimulation, and activated chemically. Reconstructed oocytes were surgically transferred into the uterine tube of naturally synchronous recipient females. A total of 212 activated cloned embryos were transferred into 12 female recipient dogs and 4 recipients became pregnant. The 4 pregnant recipients delivered 4 pups through caesarean section or natural delivery, but 1 died right after birth and did not show an abnormality. Other live puppies exhibited normal phenotypes; their appearance was similar to that of the donor dog. All cloned pups were genetically identical to the donor dog and their mitochondrial DNA was from their oocyte donor dogs. When the cloned pups were 16 weeks old, we conducted a Volhard test, which is commonly used to describe the following puppy aptitudes: social attraction, following, restraint, social dominance, elevation dominance, retrieving, touch sensitivity, sound sensitivity, and sight sensitivity. Dog behavior data on differences in transcript abundance were analyzed by a general linear mixed model. The 3 cloned pups showed similar behavioral tendencies. The present study demonstrates that NT technique using donor cell derived from 1 elite quarantine sniffing dog is useful to produce a large number of quarantine sniffing dogs. This study was supported by RDA (no. PJ0089752012), RNL Bio (no. 550-20120006), IPET (no. 311062-04-1-SB010), Research Institute for Veterinary Science, Nestlé Purina Korea, and TS Corporation.


Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 319-330
Author(s):  
Naoki Hirose ◽  
Sayaka Wakayama ◽  
Rei Inoue ◽  
Junya Ito ◽  
Masatoshi Ooga ◽  
...  

Artificial oocyte activation is important for assisted reproductive technologies, such as fertilization with round spermatids (ROSI) or the production of cloned offspring by somatic cell nuclear transfer (SCNT). Recently, phospholipase Cζ (PLCζ)-cRNA was used to mimic the natural process of fertilization, but this method required the serial injection of PLCζ-cRNA and was found to cause damage to the manipulated oocytes. Here we tried to generate offspring derived from oocytes that were fertilized using round spermatid or somatic cell nuclear transfer with the co-injection of PLCζ-cRNA. After co-injecting round spermatids and 20 ng/µL of PLCζ-cRNA into the oocytes, most of them became activated, but the activation process was delayed by more than 1 h. With the co-injection method, the rate of blastocyst formation in ROSI embryos was higher (64%) compared with that of the serial injection method (55%). On another note, when SCNT was performed using the co-injection method, the cloned offspring were obtained with a higher success rate compared with the serial-injection method. However, in either ROSI or SCNT embryos, the birth rate of offspring via the co-injection method was similar to the Sr activation method. The epigenetic status of ROSI and SCNT zygotes that was examined showed no significant difference among all activation methods. The results indicated that although the PLCζ-cRNA co-injection method did not improve the production rate of offspring, this method simplified oocyte activation with less damage, and with accurate activation time in individual oocytes, it can be useful for the basic study of oocyte activation and development.


Endocrinology ◽  
2014 ◽  
Vol 155 (12) ◽  
pp. 5011-5023 ◽  
Author(s):  
Helio A. Martins-Júnior ◽  
Fábio L. V. Pinaffi ◽  
Rosineide C. Simas ◽  
Adriana K. Tarouco ◽  
Christina R. Ferreira ◽  
...  

The plasma levels of corticosteroids and sex steroids during pregnancy are key indicators of mammalian placental function and the onset of parturition. Steroid hormones are believed to be disturbed in pregnancies produced using assisted reproductive technologies (ARTs) due to placental dysfunction and the frequently observed lack of parturition signals. To elucidate the plasma steroid dynamics, a liquid chromatography-tandem mass spectrometry method was developed and used to determine the levels of corticosteroids (corticosterone, 11-deoxycortisol, and cortisol) and their direct precursors (progesterone and 17α-OH-progesterone) as well as sex steroids (androstenedione, estrone, estrone sulfate, testosterone, and 17β-estradiol) in bovine plasma. The levels of these 10 steroids in recipient cows carrying naturally conceived (control), in vitro fertilized (IVF), or cloned (somatic cell nuclear transfer) conceptuses were compared during late-term pregnancy (30 days before parturition), during near-term pregnancy (1 day before parturition), and on the day of parturition (day 0). Significant differences were observed among the corticosteroid levels: higher levels of corticosterone, 11-deoxycortisol, and cortisol were detected in cloned pregnancies at day 30; lower levels of corticosterone were observed in ART-derived pregnancies at days 1 and 0; and estrone and estradiol levels were higher in IVF pregnancies throughout the final development. These results suggested an upregulation of the P450C11 and P450C21 enzymes 30 days before parturition in somatic cell nuclear transfer pregnancies and an overactivation of the aromatase enzyme in IVF pregnancies. Taken together, the monitoring of multiple steroid hormones revealed that the pregnancies obtained using ART exhibited plasma steroid concentration dynamics compatible with the dysregulation of steroidogenic tissues.


2017 ◽  
Vol 152 (3) ◽  
pp. 117-121
Author(s):  
My Linh Thibodeau ◽  
Michelle Steinraths ◽  
Lindsay Brown ◽  
Zheyuan Zong ◽  
Naomi Shomer ◽  
...  

A 41-year-old Asian woman with bilateral renal angiomyolipomas (AML) was incidentally identified to have a balanced translocation, 46,XX,t(11;12)(p15.4;q15). She had no other features or family history to suggest a diagnosis of tuberous sclerosis. Her healthy daughter had the same translocation and no renal AML at the age of 3 years. Whole-genome sequencing was performed on genomic maternal DNA isolated from blood. A targeted de novo assembly was then conducted with ABySS for chromosomes 11 and 12. Sanger sequencing was used to validate the translocation breakpoints. As a result, genomic characterization of chromosomes 11 and 12 revealed that the 11p breakpoint disrupted the NUP98 gene in intron 1, causing a separation of the promoter and transcription start site from the rest of the gene. The translocation breakpoint on chromosome 12q was located in a gene desert. NUP98 has not yet been associated with renal AML pathogenesis, but somatic NUP98 alterations are recurrently implicated in hematological malignancies, most often following a gene fusion event. We also found evidence for complex structural events involving chromosome 12, which appear to disrupt the TDG gene. We identified a TDGP1 partially processed pseudogene at 12p12.1, which adds complexity to the de novo assembly. In conclusion, this is the first report of a germline constitutional structural chromosome rearrangement disrupting NUP98 that occurred in a generally healthy woman with bilateral renal AML.


2007 ◽  
Vol 19 (1) ◽  
pp. 166
Author(s):  
X. J. Yin ◽  
H. S. Lee ◽  
E. G. Choi ◽  
X. F. Yu ◽  
B. H. Choi ◽  
...  

Domestic cats are a useful research model to develop assisted reproductive technologies for the conservation of endangered felids. Previously, we produced cloned offspring derived from somatic cell nuclear transfer of ear skin fibroblasts obtained from a deaf, odd-eyed, male Turkish Angora. The aim of this study was to assess the cloning efficiency of the fibroblasts derived from a cloned cat. Fibroblast cell lines were established from 6-mm skin biopsies taken from a deaf, odd-eyed, male Turkish Angora and his clone. The protocol for nuclear transfer was described previously (Yin et al. 2005 Reproduction 129, 245–249). Briefly, cumulus cells were removed from the ova by gently pipetting them into TCM-199 supplemented with 0.1% hyaluronidase. The denuded oocytes were then cultured in TCM-199 supplemented with 0.2 �g mL-1 demecolcine for 1 h and placed into TCM-199 containing 5 �g mL-1 cytochalasin B and 0.2 �g mL-1 demecolcine. The first polar body and protruded chromatin plate were removed with a beveled micropipette. Micromanipulation was used to place a single donor cell nucleus into the perivitelline space of enucleated ova. The ovum-cell couplets were fused and pulse activated. The activated couplets were cultured in 500 �L of CRI medium supplemented with 0.3% BSA for 2 days. The cleaved embryos were cultured in CRII medium supplemented with 10% FBS for 5 days. The cleavage and blastocyst development rates were 38.5% and 3.5% for second generation cloned embryos. A total of 310 second generation cloned embryos were transplanted to 9 surrogates, and 2 pregnancies at 30 days were determined by ultrasonography. One pregnancy was aborted at 40 days of gestation; the second pregnancy continued. These results indicate that the serial cloning of a cat can be generated efficiently up until pregnancy. This work was supported by KOSEF (grant #M10525010001-05N2501-00110).


Reproduction ◽  
2011 ◽  
Vol 142 (4) ◽  
pp. 497-503 ◽  
Author(s):  
Pasqualino Loi ◽  
Josef Fulka ◽  
Thomas Hildebrand ◽  
Grazyna Ptak

Reproductive technologies have been often used as a tool in research not strictly connected with developmental biology. In this study, we retrace the experimental routes that have led to the adoption of two reproductive technologies, ICSI and somatic cell nuclear transfer (SCNT), as biological assays to probe the ‘functionality’ of the genome from dead cells. The structural peculiarities of the spermatozoa nucleus, namely its lower water content and its compact chromatin structure, have made it the preferred cell for these experiments. The studies, primarily focused on mice, have demonstrated an unexpected stability of the spermatozoa nuclei, which retained the capacity to form pronuclei once injected into the oocytes even after severe denaturing agents like acid treatment and high-temperature exposure. These findings inspired further research culminating in the production of mice after ICSI of lyophilized spermatozoa. The demonstrated non-equivalence between cell vitality and nuclear vitality in spermatozoa prompted analogous studies on somatic cells. Somatic cells were treated with the same physical stress applied to spermatozoa and were injected into enucleated sheep oocytes. Despite the presumptive fragile nuclear structure, nuclei from non-viable cells (heat treated) directed early and post-implantation embryonic development on nuclear transfer, resulting in normal offspring. Recently, lyophilized somatic cells used for nuclear transfer have developed into normal embryos. In summary, ICSI and SCNT have been useful tools to prove that alternative strategies for storing banks of non-viable cells are realistic. Finally, the potential application of freeze-dried spermatozoa and cells is also discussed.


2002 ◽  
Vol 11 (1) ◽  
pp. 83-86
Author(s):  
Timothy F. Murphy

For many commentators in bioethics and the law, safety is the fulcrum for evaluating the ethics of human reproductive cloning. Carson Strong has argued that if cloning were effective and safe it should be available to married couples who have tried to have children through various assisted reproductive technologies (ARTs) but been unable to do so. On his view, cloning should be available only as reproductive last resort. I challenged that limited use by trying to show that the arguments Strong adduces in favor of reproductive somatic nuclear transfer (SNT) for married couples extend to same-sex couples as well, who face a different kind of infertility. I also went on to argue that his justifications would in fact extend the legitimate use of SNT to any couples regardless of whether they had fertility difficulties or not.


2021 ◽  
Vol 127 (1) ◽  
pp. 56-72
Author(s):  
Maria Murphy

In the 1980s, new reproductive technologies such as in vitro fertilisation and embryo transfer became commercially available in the United States, and somatic cell nuclear transfer—the cloning process by which Dolly the Sheep would be conceived in 1996—was in its experimental phase. While anxieties concerning these new technologies escalated in the popular sensorium, Laurie Anderson explored the phenomenon of cloning in a short musical film called What You Mean We? (1986) in which Anderson consults a design team to clone herself in order to manage her demanding workload. The videographic image of the clone is Anderson herself, performing in drag, and her clone’s body is partially created through the use of a pitch shifter which changes Anderson’s voice to that of the cloned—but ostensibly male—version of herself. In this article, I investigate Anderson’s technological consideration of the body, which extends beyond her own corporeality, to interrogate the biological and affective capacities of clones. I consider how Anderson addresses the convergence of reproductive technologies, the market and the creation of subjects within this market as participating in a shift in how voices are heard, governed and reproduced in the latter half of the twentieth century.


2011 ◽  
Vol 96 (6) ◽  
pp. 1306-1311 ◽  
Author(s):  
April Batcheller ◽  
Eden Cardozo ◽  
Marcy Maguire ◽  
Alan H. DeCherney ◽  
James H. Segars

2004 ◽  
Vol 16 (7) ◽  
pp. 743 ◽  
Author(s):  
Carol A. Brenner ◽  
H. Michael Kubisch ◽  
Kenneth E. Pierce

Mitochondria play a pivotal role in cellular metabolism and are important determinants of embryonic development. Mitochondrial function and biogenesis rely on an intricate coordination of regulation and expression of nuclear and mitochondrial genes. For example, several nucleus-derived transcription factors, such as mitochondrial transcription factor A, are required for mitochondrial DNA replication. Mitochondrial inheritance is strictly maternal while paternally-derived mitochondria are selectively eliminated during early embryonic cell divisions. However, there are reports from animals as well as human patients that paternal mitochondria can occasionally escape elimination, which in some cases has led to severe pathologies. The resulting existence of different mitochondrial genomes within the same cell has been termed mitochondrial heteroplasmy. The increasing use of invasive techniques in assisted reproduction in humans has raised concerns that one of the outcomes of such techniques is an increase in the incidence of mitochondrial heteroplasmy. Indeed, there is evidence that heteroplasmy is a direct consequence of ooplasm transfer, a technique that was used to ‘rescue’ oocytes from older women by injecting ooplasm from young oocytes. Mitochondria from donor and recipient were found in varying proportions in resulting children. Heteroplasmy is also a byproduct of nuclear transfer, as has been shown in studies on cloned sheep, cattle and monkeys. As therapeutic cloning will depend on nuclear transfer into oocytes and the subsequent generation of embryonic stem cells from resulting blastocysts, the prospect of mitochondrial heteroplasmy and its potential problems necessitate further studies in this area.


Sign in / Sign up

Export Citation Format

Share Document