Feed-rate and trajectory optimization for CNC machine tools

2014 ◽  
Vol 30 (6) ◽  
pp. 667-677 ◽  
Author(s):  
Paolo Bosetti ◽  
Enrico Bertolazzi
Author(s):  
Sepehr Zarifmansour ◽  
Rudolf Seethaler

Growing industrial demand for faster machine tools, makes feed-rate and trajectory optimization a challenging problem in machining processes. One of the most challenging machining operations for computer numerically controlled (CNC) machine tools is corner tracking. In this scenario, most of the conventional feed-rate optimization approaches sacrifice speed for accuracy. This paper, proposes a new feed-rate and trajectory optimization algorithm for CNC machines. At each corner of the trajectory, the presented algorithm regenerates the trajectory, using a circular move within a desired tolerance limit. Then, a new feed rate optimization method is employed, which enables the machine tool to travel at the maximum feasible velocity through the corners, while taking acceleration constraints into account. Experimental results for different desired tolerances indicate that the new algorithm achieves significantly shorter travel times than the theoretical minimum time trajectory with zero tolerance.


2020 ◽  
Vol 19 (01) ◽  
pp. 65-85
Author(s):  
Chuan-Hsun Hsu ◽  
Chi-Hsiang Wang ◽  
Syh-Shiuh Yeh

Backlash, friction, and servo lag factors often result in protrusion or segment difference phenomenon in the moving speed reversal of a machine tool’s moving table. This phenomenon can be improved by adjusting the backlash control parameters of the machine tool controller, but the control parameters must vary with the feed rate and payload of the moving table. Therefore, this study performed the circular test process for CNC machine tools, and used different feed rate, radius, and payload motion conditions to discuss the effect of backlash control parameters on quadrant protrusions. First, this study used parameter-range reduction combined with the Taguchi method and the binary search algorithm to search for the optimal backlash control parameters in the parameter setting range, so that the machine tool could have preferable quadrant protrusion performance when executing circular tests. Afterward, the correlation of the moving table feed rate, radius, and payload to the quadrant protrusion was analyzed according to the experimental results. The results indicated that the machine tool moving table feed rate had the most apparent effect on quadrant protrusions, and the relationship between the payload and quadrant protrusion was influenced by the moving table feed rate and circular radius simultaneously.


2007 ◽  
Vol 10-12 ◽  
pp. 621-625
Author(s):  
X.S. Wang ◽  
Jian Guo Yang

This article sets forth a new precision measurement method of CNC machine tools. The method incorporates the laser interferometer and the measurement principle of the double ball bar (DBB), and can measure the machine tool precision under the high feed rate condition. The generalized measurement model of three-axis has been built. Data analysis software is developed to simulate the run condition of machine tools. The repeatable experiment results proves that the method is feasible and its precision is higher than DBB`s.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


Sign in / Sign up

Export Citation Format

Share Document