Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker

2016 ◽  
Vol 41 ◽  
pp. 78-91 ◽  
Author(s):  
Tao Sun ◽  
Yapu Zhai ◽  
Yimin Song ◽  
Jiateng Zhang
Author(s):  
Leiying He ◽  
Qinchuan Li ◽  
Xubiao Zhu ◽  
Chuanyu Wu

Kinematic calibration is commonly used to improve the accuracy of a parallel mechanism. This paper presents an effective method for calibrating an overconstrained three degrees-of-freedom parallel manipulator employing a direct kinematic model. An error-mapping function is formulated from the differential of its kinematic model which is established through vector chains with the geometrical errors. To simplify the measurement of the error, the positioning and orientation error of the moving platform is replaced by the positioning error of the tool center point, which can be measured by a laser tracker accurately. Three different objective functions F1, F2, and F∞, respectively, representing 1-norm, 2-norm, and inf-norm of the error vector are used to identify the geometrical parameters of the manipulator. The results of computer simulation show that parameters after kinematic calibration through minimizing the objective function F2 is highly accurate and efficient. A calibration experiment is carried out to verify the effectiveness of the method. The maximum residual of calibration points reduces greatly from 3.904 to 0.256 mm during parameter identification. The positioning errors of all points on and inside the space surrounded by the calibration points are smaller than 0.4 mm after error compensation.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Chunshi Feng ◽  
Shuang Cong ◽  
Weiwei Shang

In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.


Measurement ◽  
2022 ◽  
pp. 110672
Author(s):  
Xiaopeng Chen ◽  
Yanyang Liu ◽  
Yang Xu ◽  
Siyuan Gou ◽  
Siyan Ma ◽  
...  

2014 ◽  
Vol 28 (10) ◽  
pp. 707-714 ◽  
Author(s):  
Jifeng Zhang ◽  
Qiaohong Chen ◽  
Chuanyu Wu ◽  
Qinchuan Li

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Fengxuan Zhang ◽  
Silu Chen ◽  
Yongyi He ◽  
Guoyun Ye ◽  
Chi Zhang ◽  
...  

This paper proposes a method for kinematic calibration of a 3T1R, 4-degree-of-freedom symmetrical parallel manipulator driven by two pairs of linear actuators. The kinematic model of the individual branched chain is established by using the local product of exponentials formula. Based on this model, the model of the end effector’s pose error is established from a pair of symmetrical branched chains, and a recursive least square method is applied for the parameter identification. By installing built-in sensors at the passive joints, a calibration method for a serial manipulator is eventually extended to this parallel manipulator. Specifically, the sensor installed at the second revolute joint of each branched chain is saved, replaced by numerical calculation according to kinematic constraints. The simulation results validate the effectiveness of the proposed kinematic error modeling and identification methods. The procedure for pre-processing compensation on this 3T1R parallel manipulator is eventually given to improve its absolute positioning accuracy, using the inverse of the calibrated kinematic model.


Robotica ◽  
2013 ◽  
Vol 32 (3) ◽  
pp. 447-466 ◽  
Author(s):  
Albert Nubiola ◽  
Mohamed Slamani ◽  
Ahmed Joubair ◽  
Ilian A. Bonev

SUMMARYThe absolute accuracy of a small industrial robot is improved using a 30-parameter calibration model. The error model takes into account a full kinematic calibration and five compliance parameters related to the stiffness in joints 2, 3, 4, 5, and 6. The linearization of the Jacobian is performed to iteratively find the modeled error parameters. Two coordinate measurement systems are used independently: a laser tracker and an optical CMM. An optimized end-effector is developed specifically for each measurement system. The robot is calibrated using fewer than 50 configurations and the calibration efficiency validated in 1000 configurations using either the laser tracker or the optical CMM. A telescopic ballbar is also used for validation. The results show that the optical CMM yields slightly better results, even when used with the simple triangular plate end-effector that was developed mainly for the laser tracker.


Robotica ◽  
2019 ◽  
Vol 37 (5) ◽  
pp. 837-850
Author(s):  
Genliang Chen ◽  
Lingyu Kong ◽  
Qinchuan Li ◽  
Hao Wang

SummaryKinematic calibration plays an important role in the improvement of positioning accuracy for parallel manipulators. Based on the specific geometric constraints of limbs, this paper presents a new kinematic parameter identification method for the widely studied 3-PRS parallel manipulator. In the proposed calibration method, the planes where the PRS limbs exactly located are identified firstly as the geometric characteristics of the studied parallel manipulator. Then, the limbs can be considered as planar PR mechanisms whose kinematic parameters can be determined conveniently according to the limb planes identified in the first step. The main merit of the proposed calibration method is that the system error model which relates the manipulator’s kinematic errors to the output ones is not required for kinematic parameter identification. Instead, only two simple geometric problems need to be established for identification, which can be solved readily using gradient-based searching algorithms. Hence, another advantage of the proposed method is that parameter identification of the manipulator’s limbs can be accomplished individually without interactive impact on each other. In order to validate the effectiveness and efficiency of the proposed method, calibration experiments are conducted on an apparatus of the studied 3-PRS parallel manipulator. The results show that using the proposed two-step calibration method, the kinematic parameters can be identified quickly by means of gradient searching algorithm (converge within five iterations for both steps). The positioning accuracy of the studied 3-PRS parallel manipulator has been significantly improved by compensation according to the identified parameters. The mean position and orientation errors at the validation configurations have been reduced to 1.56 × 10−4 m and 1.13 × 10−3 rad, respectively. Further, the proposed two-step kinematic calibration method can be extended to other limited-degree-of-freedom parallel manipulators, if proper geometric constraints can be characterized for their kinematic limbs.


Sign in / Sign up

Export Citation Format

Share Document