A geometric approach for kinematic identification of an industrial robot using a monocular camera

2019 ◽  
Vol 57 ◽  
pp. 329-346 ◽  
Author(s):  
Abdullah Aamir Hayat ◽  
Riby Abraham Boby ◽  
Subir Kumar Saha
2010 ◽  
Vol 22 (1) ◽  
pp. 100-111 ◽  
Author(s):  
Yukiyasu Domae ◽  
◽  
Haruhisa Okuda ◽  
Yasuo Kitaaki ◽  
Yuta Kimura ◽  
...  

We have constructed 3-D sensing system for alignment of connector-fitted cables as flexible linear objects which used to be difficult to be automated at the production sites. In the system an industrial robot has a 3-D sensor and a monocular camera mounted at the hand. 3-D sensor, using space encoding method, allows the robot to make high-precision measurements of the order of sub-millimeters, but emphasis is placed on precision at the expense of fields of view. In addition, active sensing methods such as the space encoding method is hard to take measurements for black cables, as well as it has some difficulties with measurements of semitransparent plastic connectors depending on view-points. To cope with those problems, our system is such that the monocular camera on the robot is moved for motion stereo to take measurements on cable shapes; connector’s poses are coarsely estimated from the measurement results; and such view-points as will ensure stable measurements are computed by space encoding method to take precision measurements of connectors. Technical features of the system could be summarized as follows: 1) Determination of view-points to measure connectors, based on measurements of cable shapes, requires no more than two measurements, without repeated searches, to grab semitransparent plastic connectors. 2) Performance of stereo correspondence for plain or black cables, which tends to result in a failure with the aids of no more than irradiated slit patterns and epipolar constraints, has been improved through sequential correspondence inmotion image sequence and its stability evaluations. At the operation tests in the validation system, the robot is assigned a task to assemble the cables into industrial servo amplifiers available on the market, in which automatic alignment of 200 connector-fitted cables has successfully been accomplished in succession to confirm constant performance of the system.


2012 ◽  
Vol 233 ◽  
pp. 247-254
Author(s):  
Zhen Wang ◽  
Xiang Ming Dun ◽  
Xiang Yong Dun

A new method to collect royal jelly is proposed according to the view of industrial robot. A three-dimensional model of royal jelly collecting robot with a monocular camera is built. Detecting the particular shapes via Fourier Descriptors and finding the corresponding target points though the image shot by the camera. The vision-based process and the 3-D simulation are performed alternately to simulate picking up queen bee larvae according to robotic forward kinematics and inverse kinematics.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

1984 ◽  
Vol 45 (C6) ◽  
pp. C6-87-C6-94
Author(s):  
H. Reinhardt ◽  
R. Balian ◽  
Y. Alhassid

2020 ◽  
Vol 4 (2) ◽  
pp. 48-55
Author(s):  
A. S. Jamaludin ◽  
M. N. M. Razali ◽  
N. Jasman ◽  
A. N. A. Ghafar ◽  
M. A. Hadi

The gripper is the most important part in an industrial robot. It is related with the environment around the robot. Today, the industrial robot grippers have to be tuned and custom made for each application by engineers, by searching to get the desired repeatability and behaviour. Vacuum suction is one of the grippers in Watch Case Press Production (WCPP) and a mechanism to improve the efficiency of the manufacturing procedure. Pick and place are the important process for the annealing process. Thus, by implementing vacuum suction gripper, the process of pick and place can be improved. The purpose of vacuum gripper other than design vacuum suction mechanism is to compare the effectiveness of vacuum suction gripper with the conventional pick and place gripper. Vacuum suction gripper is a mechanism to transport part and which later sequencing, eliminating and reducing the activities required to complete the process. Throughout this study, the process pick and place became more effective, the impact on the production of annealing process is faster. The vacuum suction gripper can pick all part at the production which will lower the loss of the productivity. In conclusion, vacuum suction gripper reduces the cycle time about 20%. Vacuum suction gripper can help lower the cycle time of a machine and allow more frequent process in order to increase the production flexibility.


1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


2020 ◽  
Vol 16 (8) ◽  
pp. 1215
Author(s):  
Kan Xiu ◽  
He Jia ◽  
Xi Zhenghao

Sign in / Sign up

Export Citation Format

Share Document