Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate–carboxymethyl guar gum blend beads

2006 ◽  
Vol 66 (6) ◽  
pp. 659-666 ◽  
Author(s):  
S.K. Bajpai ◽  
Shilpa Khare Saxena ◽  
Shubhra Sharma
Author(s):  
Roshni Jha ◽  
Anjali Minj
Keyword(s):  

A changed Pulsincap measurements type of metronidazole was created to target tranquilize discharge in the colon. Groups of hard gelatin cases were treated with formaldehyde keeping the tops in that capacity. Metronidazole pellets arranged by expulsion spheronization technique were consolidated into these particular container shells and stopped with polymers guar gum, hydroxypropylmethylcellulose 10K, carboxymethylcellulose sodium and sodium alginate independently at fixations 20 mg, 30 mg and 40 mg. The filled cases were totally covered with 5% cellulose acetic acid derivation phthalate to forestall variable gastric purging. All the definitions were tested to decide sedate substance and the capacity of the adjusted Pulsincap to give colon-explicit medication conveyance was surveyed by in vitro tranquilize discharge concentrates in cushion pH 1.2 for 2 h, pH 7.4 (reproduced intestinal liquid) for 3 h and pH 6.8 (animated colonic liquid) for 7 h. The outcomes showed that critical medication discharge happened simply after 5 h from the beginning of analysis.


RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89083-89091 ◽  
Author(s):  
Huijuan Zhang ◽  
Xianjuan Pang ◽  
Yuan Qi

A pH-sensitive and mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite semi-IPN hydrogel was designed and prepared. The composite semi-IPN hydrogel showed superior mechanical strength and pH-dependent swelling behavior.


2019 ◽  
Vol 61 (5) ◽  
pp. 680-690 ◽  
Author(s):  
Linhui Zhu ◽  
Yu Liu ◽  
Bin Zhou ◽  
Hongduo Tang ◽  
Fangyuan Wang ◽  
...  

2004 ◽  
Vol 9 (3) ◽  
pp. 371-374 ◽  
Author(s):  
He Dong-bao ◽  
Li Li-hua ◽  
Li Qing ◽  
Yang Xiao-zhen

2019 ◽  
Vol 9 (4-A) ◽  
pp. 79-85
Author(s):  
Elangovan Nagarajan ◽  
B Rama ◽  
M Swetha ◽  
G.S Sharma ◽  
L Jyothi Rani ◽  
...  

In the present work, double walled microspheres of Tamoxifen (antiestrogenic drug) using Sodium alginate, Hydroxy propyl methyl cellulose (HPMC) K100,Guar gum, Xanthun gum were formulated to deliver Tamoxifen (TMX) through  oral route to treat breast cancer patients. Details regarding the preparation and evaluation of the formulations have been discussed in results. From the study following conclusions could be drawn. The results of this investigation indicate that Ion gelation method can be successfully employed to fabricate TMX microspheres. FT-IR spectra of the physical mixture revealed that the drug is compatible with the polymers and copolymer used. Microspheres containing sodium alginate along with HPMC in 1:1 ratio had a least size range of 610µm. Increase in the polymer concentration led to increase in % Yield, % Drug entrapment efficiency, Particle size. The  invitro drug release decreased with increase in the polymer and copolymer concentration. Among all formulations F7 shows Maximum drug release in 12 th hr  when compared with other formulations. Analysis of drug release mechanism showed that the drug release from the formulations followed the Non fickian diffusion mechanism and follows zero order kinectics. Based on the results of evaluation tests formulation coded F7 was concluded as best formulation. Keywords : Tamoxifen, sodium alginate, HPMC, Microspheres, Diffusion, Copolymers,  Entrapment efficiency.


2020 ◽  
Vol 11 (2) ◽  
pp. 2638-2649
Author(s):  
Masar Basim Mohsin Mohamed ◽  
Iman Sabah Jaafar ◽  
Methaq Hamad Sabar ◽  
Marwa Hazem Jasim ◽  
Furqan M. Abdulelah ◽  
...  

Sodium alginate, calcium carbonate, and guar gum were mixed with oils such as olive oil (OO), sesame oil (SO), and medium chain triglyceride (MCT). The oily formulations were found to simplify the preparation of in situ floating gel. This was the aim of this study using ketoconazole (keto) as a model drug. The investigations for the floating property were established by In vitro gelling capacity study and In vitro floating study. Additionally, in vitro release study was applied to find the best formulations to delay the release of keto. Then, selected formulations were studied by FTIR and SEM. Lastly, in vivo gelation was performed to examine the gelation in the rat’s stomach. The results showed all formulations were floating after successful gelation as the least amount of sodium alginate to gel oils was 20% w/w. The gels in SO and OO were better than MCT in delaying keto release, and 30% w/w sodium alginate in SO was the best to delay the release of keto within 8 hours of the release study. Selected gels showed interactions between the keto molecules and the molecules of the gel contents by FTIR study, and SEM showed a difference in the internal structure of selected formulations. Lastly, the 30% w/w sodium alginate in SO proved to gel and remain in the rat's stomach in the following periods: 30 min, 1 hour, 2 hours, and after 8 hours. Oily suspension formulations showed floating properties in the stomach and slowed the release of keto and specifically 30% w/w of sodium alginate in SO.


2001 ◽  
Vol 83 (2) ◽  
pp. 259-272 ◽  
Author(s):  
Udaya S. Toti ◽  
Mahadevappa Y. Kariduraganavar ◽  
Kumaresh S. Soppimath ◽  
Tejraj M. Aminabhavi

Sign in / Sign up

Export Citation Format

Share Document