Performance analysis of parallel flow flat plate solar air heater having arc shaped wire roughened absorber plate

2020 ◽  
Vol 32 ◽  
pp. 23-44 ◽  
Author(s):  
Kapil Dev Yadav ◽  
Radha Krishna Prasad
2014 ◽  
Vol 493 ◽  
pp. 86-92 ◽  
Author(s):  
Ekadewi A. Handoyo ◽  
Djatmiko Ichsani ◽  
Prabowo ◽  
S. Sutardi

A solar air heater (SAH) is a simple heater using solar radiation that is useful for drying or space heating. Unfortunately, heat transfer from the absorber plate to the air inside the solar air heater is low. Some researchers reported that obstacles are able to improve the heat transfer in a flat plate solar air collector and others found that a v-corrugated absorber plate gives better heat transfer than a flat plate. Yet, no work of combining these two findings is found.This paper describes the result of experimental study on a SAH with v-corrugated absorber plate and obstacles bent vertically started from 80oto 0owith interval 10oon its bottom plate. Experiments were conducted indoor at five different Reynolds numbers (1447 Re 7237) and three different radiation intensities (430, 573, and 716 W/m2).It is found that the obstacles improve SAH performance. Both the air temperature rise and efficiency increase with inserting obstacles bent at any angle vertically. Unfortunately, the air pressure drop is increasing, too. Obstacles bent vertically at smaller angle (means more straight) give higher air temperature rise and efficiency. However, the optimum angle is found 30o. The air temperature rise and efficiency will be 5.3% lower when the obstacles bent 30oinstead of 0o, but the pressure drop will be 17.2% lower.


2018 ◽  
Vol 7 (1) ◽  
pp. 5-15
Author(s):  
Chander Kant ◽  
Prashant Kumar ◽  
Ankur Gill ◽  
Dhiraj Parkash Dhiman

A solar air heater is basically a heat exchanger, which intercepts the incident solar radiation, converts it into heat and finally transfers this heat to a working fluid for an end use system. The mode of air flowing in the ducts of a solar air heater is one of the most significant aspects concerned with solar air heater which dominantly affect. A double duct parallel flow artificially roughened solar air heater with three sides of the absorber plate is investigated in the current study. Unlike the conventional model of solar air heater with only one sided roughened absorber plate, a novel solar air heater with three artificially roughened absorber plate is used so that the surface area of the absorber plate is increased which ultimately increases the rate of heat transfer. Additionally, a double duct parallel flow arrangement through inner and outer duct of solar air heater is considered order to enhance the heat transfer rate. A numerical investigation of the heat transfer and friction factor characteristics of a double duct parallel flow three sided artificially roughened solar air heater has been carried out. A commercial finite volume CFD code ANSYS FLUENT is used to simulate turbulent air flow through artificial roughened solar air heater. Governing equations of the fluid flow and heat transfer i.e. Navier-Stokes equation and energy equation are solved with RNG k-ε turbulence model. Nine different configuration of square rib are studied with relative roughness pitch (P/e = 5-10) and relative roughness height (e/D = 0.03-0.06). The Reynold number of the flow is varied from 2500 to 16000.


2017 ◽  
Vol 10 ◽  
pp. 111-120 ◽  
Author(s):  
Alsanossi M. Aboghrara ◽  
B.T.H.T. Baharudin ◽  
M.A. Alghoul ◽  
Nor Mariah Adam ◽  
A.A. Hairuddin ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Alsanossi M. Aboghrara ◽  
M. A. Alghoul ◽  
B. T. H. T. Baharudin ◽  
A. M. Elbreki ◽  
A. A. Ammar ◽  
...  

Previous works revealed that cross-corrugated absorber plate design and jet impingement on a flat absorber plate resulted in a significant increase in the performance of a solar air heater (SAH). Involving these two designs into one continuous design to improve the SAH performance remains absent in the literature. This study aimed to evaluate the achieved enhancement on performance parameters of a SAH with jet impingement on a corrugated absorber plate. An energy balance model was developed to compare the performance parameters of the proposed SAH with the other two SAHs. At a clear sky day and a mass flow rate of 0.04 kg/s, the hourly results revealed that the max fluid outlet temperatures for the proposed SAH, jet-to-flat plate SAH, and cross-corrugated plate SAH are 321, 317, and 313 K, respectively; the max absorber plate temperatures are 323.5, 326.5, and 328 K, respectively; the maximum temperature differences between the absorber plate and fluid outlet are ~3, 9, and 15 K, respectively; the max efficiencies are 65.7, 64.8, and 60%, respectively. Statistical t-test results confirmed significant differences between the mean efficiency of the proposed SAH and SAH with jet-to-flat plate. Hence, the proposed design is considered superior in improving the performance parameters of SAH compared to other designs.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Rajendra Karwa ◽  
Shweta Baghel

The paper presents results of an analysis carried out using a mathematical model to find the effect of the uncertainties, variations, and tolerances in design and ambient parameters on the thermohydraulic performance of flat plate solar air heater. Analysis shows that, for the range of flow rates considered, a duct height of 10 mm is preferred from the thermohydraulic consideration. The thermal efficiency changes by about 2.6% on variation in the wind heat transfer coefficient, ±5 K variation in sky temperature affects the efficiency by about ±1.3%, and solar insolation variation from 500 to 1000 Wm−2 affects the efficiency by about −1.5 to 1.3% at the lowest flow rate of 0.01 kgs−1 m−2 of the absorber plate with black paint. In general, these effects reduce with increase in flow rate and are lower for collector with selective coating on the absorber plate surface. The tolerances in the duct height and absorber plate emissivity should be small while positive tolerance of 3° in the collector slope for winter operation and ±3° for year round operation, and a positive tolerance for the gap between the absorber plate and glass cover at nominal value of 40 mm are recommended.


Sign in / Sign up

Export Citation Format

Share Document