scholarly journals Effect of Parametric Uncertainties, Variations, and Tolerances on Thermohydraulic Performance of Flat Plate Solar Air Heater

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Rajendra Karwa ◽  
Shweta Baghel

The paper presents results of an analysis carried out using a mathematical model to find the effect of the uncertainties, variations, and tolerances in design and ambient parameters on the thermohydraulic performance of flat plate solar air heater. Analysis shows that, for the range of flow rates considered, a duct height of 10 mm is preferred from the thermohydraulic consideration. The thermal efficiency changes by about 2.6% on variation in the wind heat transfer coefficient, ±5 K variation in sky temperature affects the efficiency by about ±1.3%, and solar insolation variation from 500 to 1000 Wm−2 affects the efficiency by about −1.5 to 1.3% at the lowest flow rate of 0.01 kgs−1 m−2 of the absorber plate with black paint. In general, these effects reduce with increase in flow rate and are lower for collector with selective coating on the absorber plate surface. The tolerances in the duct height and absorber plate emissivity should be small while positive tolerance of 3° in the collector slope for winter operation and ±3° for year round operation, and a positive tolerance for the gap between the absorber plate and glass cover at nominal value of 40 mm are recommended.

2014 ◽  
Vol 493 ◽  
pp. 86-92 ◽  
Author(s):  
Ekadewi A. Handoyo ◽  
Djatmiko Ichsani ◽  
Prabowo ◽  
S. Sutardi

A solar air heater (SAH) is a simple heater using solar radiation that is useful for drying or space heating. Unfortunately, heat transfer from the absorber plate to the air inside the solar air heater is low. Some researchers reported that obstacles are able to improve the heat transfer in a flat plate solar air collector and others found that a v-corrugated absorber plate gives better heat transfer than a flat plate. Yet, no work of combining these two findings is found.This paper describes the result of experimental study on a SAH with v-corrugated absorber plate and obstacles bent vertically started from 80oto 0owith interval 10oon its bottom plate. Experiments were conducted indoor at five different Reynolds numbers (1447 Re 7237) and three different radiation intensities (430, 573, and 716 W/m2).It is found that the obstacles improve SAH performance. Both the air temperature rise and efficiency increase with inserting obstacles bent at any angle vertically. Unfortunately, the air pressure drop is increasing, too. Obstacles bent vertically at smaller angle (means more straight) give higher air temperature rise and efficiency. However, the optimum angle is found 30o. The air temperature rise and efficiency will be 5.3% lower when the obstacles bent 30oinstead of 0o, but the pressure drop will be 17.2% lower.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
M. S. Manjunath ◽  
K. Vasudeva Karanth ◽  
N. Yagnesh Sharma

This paper presents a three-dimensional numerical analysis of a flat plate solar air heater in the presence of a pin fin array using the computational fluid dynamics (CFD) software tool ansys fluent 16.2. The effect of geometric parameters of pin fins as well as the flow Reynolds number (4000–24,000) on the effective efficiency is evaluated. The longitudinal pitch (PL) of pin fin array is varied as 30 mm, 40 mm, and 50 mm and the diameter (Dw) is varied as 1.0 mm, 1.6 mm, and 2.2 mm. The results show that the presence of pin fins generate considerable enhancement in fluid turbulence as well as heat transfer area to a maximum extent of about 53.8%. The maximum average increase in instantaneous thermal efficiency is found to be about 14.2% higher as compared with the base model for the fin diameter of 2.2 mm and a longitudinal pitch value of 30 mm. In terms of effective efficiency, the pin fin array exhibits significant enhancement, especially at lower flow rate conditions. Finally, the effective efficiency of the pin fin array is compared with the previous work of authors involving spherical turbulators and sinewave corrugations on the absorber plate. The results show that the pin fin array exhibits a relatively superior effective efficiency to a maximum extent of about 73% for lower flow rate conditions.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 333-337
Author(s):  
Filiz Ozgen ◽  
Ayse Dayan

In this study, the energy analysis of a solar air heater with an absorber plate made of different obstacles was made. Absorber plate of the solar air heater was created with porous steel wool. Three different absorber plates were used for the experimental study. Complex plate (Type I) was used as the first type of absorber plate, less complex plate (Type II) as the second type absorber plate, and flat plate (Type III) the third type absorber plate. On these plates, which are manufactured as three different absorber plates, steel wools are placed in a complex and less complex way. One absorber plate was left empty. In the experiments, the mass-flow rate of the air passing through the air passage channels was taken as 0.05 kg/s and 0.025 kg/s, and the optimum flow rate was found as 0.05 kg/s. In order to make heater efficiency calculations, heater inlet temperature, outlet temperature, absorber plate temperature, ambient temperature and solar radiation values were measured. Efficiency values for different absorber plate were found between 23% and 74%.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Alsanossi M. Aboghrara ◽  
M. A. Alghoul ◽  
B. T. H. T. Baharudin ◽  
A. M. Elbreki ◽  
A. A. Ammar ◽  
...  

Previous works revealed that cross-corrugated absorber plate design and jet impingement on a flat absorber plate resulted in a significant increase in the performance of a solar air heater (SAH). Involving these two designs into one continuous design to improve the SAH performance remains absent in the literature. This study aimed to evaluate the achieved enhancement on performance parameters of a SAH with jet impingement on a corrugated absorber plate. An energy balance model was developed to compare the performance parameters of the proposed SAH with the other two SAHs. At a clear sky day and a mass flow rate of 0.04 kg/s, the hourly results revealed that the max fluid outlet temperatures for the proposed SAH, jet-to-flat plate SAH, and cross-corrugated plate SAH are 321, 317, and 313 K, respectively; the max absorber plate temperatures are 323.5, 326.5, and 328 K, respectively; the maximum temperature differences between the absorber plate and fluid outlet are ~3, 9, and 15 K, respectively; the max efficiencies are 65.7, 64.8, and 60%, respectively. Statistical t-test results confirmed significant differences between the mean efficiency of the proposed SAH and SAH with jet-to-flat plate. Hence, the proposed design is considered superior in improving the performance parameters of SAH compared to other designs.


2017 ◽  
Vol 7 (2) ◽  
pp. 59
Author(s):  
Dedet Hermawan Setiabudi ◽  
Muhrom Khudhori

This research examined the effect of air velocity and the efficiency of double-pass flat plate solar air heater with two glass covers on the performance of solar desalination unit based on heat pump with using humidification and dehumidification processes. This unit consists of a heat pump, humidifier, dehumidifier, and double-pass flat plate solar air heater with two glass covers. The research was conducted in an indoor experiment. Solar energy generated from solar simulator using halogen lamps. In this research the air flow rate was varied at 3 metres per second, 4 metres per second, 5 metres per second, and 6 metres per second, while the intensity of solar radiation at 828 Watts per meter squared. At each variation in air velocity, sea water temperature was conditioned at a constant temperature of 45 degrees celcius, the compressor was operated at a constant rotation of 900 rpm, volumetric flow rate of sea water inlet 300 liters per hour into humidifier and sea water in this system was re-circulated. The research result showed that the volume of fresh water production increases with increasing air velocity inlet into humidifier. This solar desalination unit could produce fresh water maximum 2470 milliliters per hour in air velocity 6 metres per second.


Author(s):  
Akram H Abed ◽  
Abdulmunem R Abdulmunem

In this work, a combination between latent heat storage materials (LHSm) and sensibleheat storage materials (SHSm) as new storage heat material in flat plate solar air heater wastested experimentally. PCM (paraffin wax) at a certain ratios (10%) and (20%) were used asLHSm with a pure cement (base material) as SHSm. The experimental tests was doneindoor at irradiance of (1000W/m2) with forced convection, the mass flow rate of air are(0.5kg/min) and (1.13kg/min). The results indicated that the enhancing thermo-physicalproperties of adding pure cement by a certain ratios of paraffin wax led to enhancement inthermal energy stored. The percentage increasing in storage heat duration time was (29%)for compound cement with (10%PCM), (38.4%) for compound cement with (20%PCM),compared with pure cement at (0.5kg/min) air mass flow rate. And at (1.13kg/min) air massflow rate, it was (33.3%) for compound cement with (10%PCM) and (52.6%) for compoundcement with (20%PCM) compared with pure cement.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Satyender Singh ◽  
Prashant Dhiman

Thermal performance of a single-pass single-glass cover solar air heater consisting of semicircular absorber plate finned with rectangular longitudinal fins is investigated. The analysis is carried out for different hydraulic diameters, which were obtained by varying the diameter of the duct from 0.3–0.5 m. One to five numbers of fins are considered. Reynolds number ranges from 1600–4300. Analytical solutions for energy balance equations of different elements and duct flow of the solar air heater are presented; results are compared with finite-volume methodology based numerical solutions obtained from ansys fluent commercial software, and a fairly good agreement is achieved. Moreover, analysis is extended to check the effect of double-glass cover and the recycle of the exiting air. Results revealed that the use of double-glass cover and recycle operation improves the thermal performance of solar air heater.


Sign in / Sign up

Export Citation Format

Share Document