Dimensioning, thermal analysis and experimental heat loss coefficients of an adsorptive solar icemaker

2004 ◽  
Vol 29 (10) ◽  
pp. 1643-1663 ◽  
Author(s):  
A.P.F. Leite ◽  
M.B. Grilo ◽  
F.A. Belo ◽  
R.R.D. Andrade
Author(s):  
Stanislav Tkachenko ◽  
Olga Vlasenko ◽  
Natalia Rezydent

The experimental investigations of the intensity of the heat exchange between the internal surface of the thin-wall metal cylinder and the studied liquid medium were carried out in conditions of its cooling (heating), i.e. under nonstationary heat exchange conditions. The existence of the regular thermal mode in the liquid medium surrounded by the thin-wall metal cylinder has been established. Local in time heat loss coefficients were derived using appropriate dimensionless equations for the stationary mode conditions of heat-exchange in a large volume. Heat loss coefficients were determined using regular thermal mode methods and computational-&-experimental heat loss coefficients. The changes in the relative values of the heat loss coefficients were analyzed using the method of regular thermal mode and computational-&-experimental heat loss coefficients. The deviations in the values of given coefficients in time are mainly within ± 10 %. Relative values of the heat loss coefficients deviate within ± 40 % using appropriate dimensionless equations for the conditions of the stationary mode of heat exchange in a large volume. This conclusion is natural because the cooling (heating) process is nonstationary.


Investigation of the thermal analysis of a conventional (uncoated) diesel piston made up of Aluminum silicon alloy was carried out in this present study. Secondly, thermal analysis was performed on piston crown, coated with 20% Al2O3 & 80% Yttria Stabilized Zirconia material. TBC comes with two layers; the first layer is a bond coating with NiCoCrAlY compound. The second layer with TBC material (20% Aluminum oxide & 80% Yttria Stabilized Zirconia). The method of multilayer coating was achieved through the Air Plasma spraying technique. Using the coated piston the required temperature in the combustion chamber will be maintained. This will reduce the heat loss to the piston. This reduction in the heat loss will be used to burn the un-burnt gases thereby reducing the polluted exhaust gases. Result will be shown as the thermal efficiency of the coated piston at full load will be increased than uncoated piston and the oxides of nitrogen will be increased.


2018 ◽  
Vol 10 (9) ◽  
pp. 3216 ◽  
Author(s):  
Haolu Liu ◽  
Khurram Yousaf ◽  
Kunjie Chen ◽  
Rui Fan ◽  
Jiaxin Liu ◽  
...  

In this study, an experimental heat pump dryer was designed. The specific moisture extraction rate and moisture extraction rate were used as performance indicators to explore the influence of environmental factors and the style of the hot air cycle on heat pump drying. The average temperature and humidity in Nanjing’s summer, winter, and throughout the whole year were taken as the experimental ambient temperature and humidity. Garlic slices 3 mm thick, with an initial moisture content of 66.714% w.b., were dried until the end moisture content was 10% w.b. Experimental results and thermal analysis showed that the open and semi-open heat pump dryers were greatly affected by ambient temperature and humidity. The closed heat pump drying system was greatly affected by the bypass air rate.


2018 ◽  
Vol 37 (1) ◽  
pp. 57-69
Author(s):  
Anthony Rotimi Hassan ◽  
Hammed Abiodun Ogunseye ◽  
Jacob Abiodun Gbadeyan

2018 ◽  
Author(s):  
NAVIN KUMAR MAHTO

The lifting gas used in Lighter-than-Air systems is usually Helium or Hydrogen. Helium is a rare gas and hence very expensive and Hydrogen, though relatively less expensive and easily available, is highly inflammable. Hot air has been used as an LTA gas since the first flight of a balloon in the 18th century, but its utilization in tethered aerostat systems has been limited. The objective of this project is to examine the feasibility of using hot air as the LTA gas in a practical tethered aerostat system. In this study, the thermal analysis of hot air envelope was conducted to predict heat losses and power requirements. This was followed by an experimental study to validate the theoretical values obtained from the thermal model, in which an electrical heating system was inserted inside a spherical envelope made of rip-stop nylon with a fire-retardant coating. Heat loss predictions were extrapolated for a larger size working prototype and feasibility studies were performed. The experimental heat loss predictions were far higher than those obtained using the thermal model available in literature. The power requirement for the smallest possible spherical working prototype made of Polyurethane coated envelope, with a radius of 2.3 m was estimated to be more than 66 kW. However, for an envelope fabricated with a proprietary material named aerofabrix®, around 33% reduction in the power requirement was estimated. These results show a promise for a hot-air based tethered aerostat system, but with several design and operational challenges, which will be highlighted in the paper.


Sign in / Sign up

Export Citation Format

Share Document