The effects of using ethanol as additive on the combustion and emissions of a direct injection diesel engine fuelled with neat lemongrass oil-diesel fuel blend

2017 ◽  
Vol 101 ◽  
pp. 747-756 ◽  
Author(s):  
R. Sathiyamoorthi ◽  
G. Sankaranarayanan
2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


2015 ◽  
Vol 146 ◽  
pp. 20-28 ◽  
Author(s):  
Byungchul Choi ◽  
Xiaolong Jiang ◽  
Young Kwon Kim ◽  
Gilsung Jung ◽  
Chunhwan Lee ◽  
...  

2021 ◽  
Author(s):  
Thanigaivelan V ◽  
Lavanya R

Abstract Emission from the DI diesel engine is series setback for environment viewpoint. Intended for that investigates for alternative biofuel is persuaded. The important hitches with the utilization of biofuels and their blends in DI diesel engines are higher emanations and inferior brake-thermal efficiency as associated to sole diesel fuel. In this effort, Cashew nut shell liquid (CNSL) biodiesel, hydrogen and ethanol (BHE) mixtures remained verified in a direct-injection diesel engine with single cylinder to examine the performance and discharge features of the engine. The ethanol remained supplemented 5%, 10% and 15% correspondingly through enhanced CNSL as well as hydrogen functioned twin fuel engine. The experiments done in a direct injection diesel engine with single-cylinder at steadystate conditions above the persistent RPM (1500RPM). Throughout the experiment, emissions of pollutants such as fuel consumption rate (SFC), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and pressure of the fuel were also measured. cylinders. The experimental results show that, compared to diesel fuel, the braking heat of the biodiesel mixture is reduced by 26.79-24% and the BSFC diminutions with growing addition of ethanol from the CNSL hydrogen mixture. The BTE upsurges thru a rise in ethanol proportion with CNSL hydrogen mixtures. Finally, the optimum combination of ethanol with CNSL hydrogen blends led to the reduced levels of HC and CO emissions with trivial upsurge in exhaust gas temperature and NOx emissions. This paper reconnoiters the routine of artificial neural networks (ANN) to envisage recital, ignition and discharges effect.


Energy ◽  
2012 ◽  
Vol 43 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Dimitrios C. Rakopoulos ◽  
Constantine D. Rakopoulos ◽  
Evangelos G. Giakoumis ◽  
Athanasios M. Dimaratos

Author(s):  
K. Anandavelu ◽  
N. Alagumurthi ◽  
C. G. Saravanan

Light Vegetable oils are a promising alternative among the different diesel fuel alternatives. Using Light Vegetable oils in diesel engine is not a new idea. The Vegetable oils have high energy content. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as severe engine deposits, piston ring sticking and thickening of lubrication oil due to long-term use in diesel engines. Diesel fueled engine have the disadvantage of producing Smoke, Particulate Matter and Nitrogen Oxides and are now subjected to increasingly severe legislation of Emission norms. The required levels are difficult to achieve through engine design alone. Even with high-grade fuels, catalytic systems are being extensively investigated to reduce the diesel engine emission. But there are still difficulties in operation of these. This leads to replacement of diesel fuel with renewable fuels has been set target worldwide to reduce the diesel exhaust pollution. The energy of the light vegetable oil can be released more efficiently with the concept of low heat rejection (LHR) engine. The aim of the study is to apply LHR engine for improving the engine performance and reducing the emission when light vegetable oil (turpentine oil) is used as an alternate fuel. The work was carried out in two stages. In first Stage, the turpentine oil (20, 40, 60, 80 & 100, v/v) with diesel blends used in direct injection diesel engine and to identify best blend with respect to performance and emission. In second Stage, the work has been carried out by the converting direct injection diesel engine in to a LHR engine and the effects of different blends of turpentine oil (20, 40, 60, 80 & 100, v/v) with diesel fuel used in LHR engine and its performance, emission and combustion characteristics have been investigated experimentally. From the experimental investigation, the combination of LHR engine with blended fuels shows the better performance when compared to diesel engine. The smoke density decreases for the diesel engine (without LHR) whereas with the effect of LHR, Oxides of Nitrogen will be reduced and heat release rate also reduces.


Sign in / Sign up

Export Citation Format

Share Document