An experimental and modeling approach for ethanol production by Kluyveromyces marxianus in stirred tank bioreactor using vacuum extraction as a strategy to overcome product inhibition

2019 ◽  
Vol 131 ◽  
pp. 261-267 ◽  
Author(s):  
Bruna Tavares ◽  
Maria das Graças de Almeida Felipe ◽  
Júlio César dos Santos ◽  
Félix Monteiro Pereira ◽  
Simone Damasceno Gomes ◽  
...  
2014 ◽  
Vol 68 (12) ◽  
Author(s):  
Mário Mihaľ ◽  
Ramiro Goncalves ◽  
Jozef Markoš

AbstractBioconversion of l-phenylalanine to 2-phenylethanol using Saccharomyces cerevisiae is connected with the growth of biomass strongly limited by product inhibition. Therefore, fermentation can proceed only at low conversions of l-phenylalanine with very low yield of the desired product, which allows reaching the maximum concentration of 2-phenylethanol, 4 g L−1, in an ordinary batch, fed-batch, or chemostat bioreactor. To minimize capital and operating costs in the bioproduction of chemical specialties where the product inhibits the bioreaction, using a hybrid system based on the application of membrane extraction integrated in the bioreactor to remove the product is a suitable solution. Integration can be done by an external module for membrane extraction or, as a more efficient solution, by an extraction membrane module immersed directly in the bioreactor. Such a hybrid system can be used to remove 2-phenylethanol from the fermentation media and thus to overcome the product inhibition of the biotransformation process. In this paper, a hybrid system consisting of a stirred tank bioreactor (3.5 L) and an immersed extraction hollow fiber membrane module was studied. In the proposed system, the kinetics of 2-phenylethanol extraction from a water solution with and without biomass in the bioreactor to alkanes at different operational conditions was measured. Extraction kinetics was compared with the predictions obtained by a mathematical model. In the hybrid system, two extractive biotransformation experiments were performed and compared with that without product removal. Experimental data were also mathematically predicted with good accuracy between the simulation and the experiment.


2011 ◽  
Vol 28 (1) ◽  
pp. 151-156 ◽  
Author(s):  
J. P. A. Silva ◽  
S. I. Mussatto ◽  
I. C. Roberto ◽  
J. A. Teixeira

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 199 ◽  
Author(s):  
Carolina Benevenuti ◽  
Marcelle Branco ◽  
Mariana do Nascimento-Correa ◽  
Alanna Botelho ◽  
Tatiana Ferreira ◽  
...  

Recycling residual industrial gases and residual biomass as substrates to biofuel production by fermentation is an important alternative to reduce organic wastes and greenhouse gases emission. Clostridium carboxidivorans can metabolize gaseous substrates as CO and CO2 to produce ethanol and higher alcohols through the Wood-Ljungdahl pathway. However, the syngas fermentation is limited by low mass transfer rates. In this work, a syngas fermentation was carried out in serum glass bottles adding different concentrations of Tween® 80 in ATCC® 2713 culture medium to improve gas-liquid mass transfer. We observed a 200% increase in ethanol production by adding 0.15% (v/v) of the surfactant in the culture medium and a 15% increase in biomass production by adding 0.3% (v/v) of the surfactant in the culture medium. The process was reproduced in stirred tank bioreactor with continuous syngas low flow, and a maximum ethanol productivity of 0.050 g/L.h was achieved.


Sign in / Sign up

Export Citation Format

Share Document