Intensive 2-phenylethanol production in a hybrid system combined of a stirred tank reactor and an immersed extraction membrane module

2014 ◽  
Vol 68 (12) ◽  
Author(s):  
Mário Mihaľ ◽  
Ramiro Goncalves ◽  
Jozef Markoš

AbstractBioconversion of l-phenylalanine to 2-phenylethanol using Saccharomyces cerevisiae is connected with the growth of biomass strongly limited by product inhibition. Therefore, fermentation can proceed only at low conversions of l-phenylalanine with very low yield of the desired product, which allows reaching the maximum concentration of 2-phenylethanol, 4 g L−1, in an ordinary batch, fed-batch, or chemostat bioreactor. To minimize capital and operating costs in the bioproduction of chemical specialties where the product inhibits the bioreaction, using a hybrid system based on the application of membrane extraction integrated in the bioreactor to remove the product is a suitable solution. Integration can be done by an external module for membrane extraction or, as a more efficient solution, by an extraction membrane module immersed directly in the bioreactor. Such a hybrid system can be used to remove 2-phenylethanol from the fermentation media and thus to overcome the product inhibition of the biotransformation process. In this paper, a hybrid system consisting of a stirred tank bioreactor (3.5 L) and an immersed extraction hollow fiber membrane module was studied. In the proposed system, the kinetics of 2-phenylethanol extraction from a water solution with and without biomass in the bioreactor to alkanes at different operational conditions was measured. Extraction kinetics was compared with the predictions obtained by a mathematical model. In the hybrid system, two extractive biotransformation experiments were performed and compared with that without product removal. Experimental data were also mathematically predicted with good accuracy between the simulation and the experiment.

2013 ◽  
Vol 67 (12) ◽  
Author(s):  
Mário Mihaľ ◽  
Sean Gavin ◽  
Jozef Markoš

AbstractIn recent times, environmental production methods and organic products are increasingly sought after in food, perfume, and cosmetic industries, where the products are consumed or come into direct contact with humans. One such additive is 2-phenylethanol, an alcoholic aromatic rose like smell compound, mainly used as a flavor and aroma. 2-Phenylethanol can be produced by bioconversion from l-phenylalanine using Saccharomyces cerevisiae. This type of biotransformation is strongly limited by product inhibition which allows reaching the maximum concentration of 2-phenylethanol, 4 g L−1, in an ordinary batch, fed-batch, or chemostat bioreactor. The main aim of the presented work was to study the possible yield increase of 2-phenylethanol in a hybrid system consisting of membrane extraction performed by a hollow fiber membrane module immersed in the downcomer of an airlift reactor. Such hybrid system can be used to remove 2-phenylethanol from the fermentation medium and thus to overcome the product inhibition of biotransformation. In this paper, the influence of biomass on membrane extraction of 2-phenylethanol from aqueous solution in an airlift reactor to alkanes at different operational conditions was studied. The measured extraction kinetics was compared with the predictions obtained by a mathematical model. Hydrodynamics of the hybrid system was also studied.


2019 ◽  
Vol 131 ◽  
pp. 261-267 ◽  
Author(s):  
Bruna Tavares ◽  
Maria das Graças de Almeida Felipe ◽  
Júlio César dos Santos ◽  
Félix Monteiro Pereira ◽  
Simone Damasceno Gomes ◽  
...  

2005 ◽  
Vol 31 (5) ◽  
pp. 325-330 ◽  
Author(s):  
Norifumi Matsumiya ◽  
Masaaki Teramoto ◽  
Satoshi Kitada ◽  
Kenji Haraya ◽  
Hideto Matsuyama

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shinji Hayashi ◽  
Rieko Yagi ◽  
Shuhei Taniguchi ◽  
Masami Uji ◽  
Hidaka Urano ◽  
...  

AbstractCell-assisted lipotransfer (CAL) is an advanced lipoinjection method that uses autologous lipotransfer with addition of a stromal vascular fraction (SVF) containing adipose-derived stromal stem cells (ASCs). The CAL procedure of manual isolation of cells from fat requires cell processing to be performed in clean environment. To isolate cells from fat without the need for a cell processing center, such as in a procedure in an operation theater, we developed a novel method for processing SVF using a closed cell washing concentration device (CCD) with a hollow fiber membrane module. The CCD consists of a sterilized closed circuit, bags and hollow fiber, semi-automatic device and the device allows removal of >99.97% of collagenase from SVF while maintaining sterility. The number of nucleated cells, ASCs and viability in SVF processed by this method were equivalent to those in SVF processed using conventional manual isolation. Our results suggest that the CCD system is as reliable as manual isolation and may also be useful for CAL. This approach will help in the development of regenerative medicine at clinics without a cell processing center.


2018 ◽  
Vol 69 ◽  
pp. 1-11 ◽  
Author(s):  
Willian Daniel Hahn Schneider ◽  
Roselei Claudete Fontana ◽  
Simone Mendonça ◽  
Félix Gonçalves de Siqueira ◽  
Aldo José Pinheiro Dillon ◽  
...  

2019 ◽  
Vol 117 ◽  
pp. 113-125 ◽  
Author(s):  
Zorana Rončević ◽  
Jovana Grahovac ◽  
Siniša Dodić ◽  
Damjan Vučurović ◽  
Jelena Dodić

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azmir Arifin ◽  
Maizirwan Mel ◽  
Mohamed Ismail Abdul Karim ◽  
Aini Ideris

The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was1.93×106 cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about7.95×105 cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on3∗∗(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.


Sign in / Sign up

Export Citation Format

Share Document