Study of the flow fields over simplified topographies with different roughness conditions using large eddy simulations

2019 ◽  
Vol 136 ◽  
pp. 968-992 ◽  
Author(s):  
Zhenqing Liu ◽  
Zheng Diao ◽  
Takeshi Ishihara
Author(s):  
D. H. Leedom ◽  
S. Acharya

Large Eddy Simulations (LES) of cylindrical, laterally diffused, and console holes are performed, and the resulting flow field data is presented. The motivation for performing LES is to enable more accurate simulations and to obtain a better understanding of the flow physics associated with complex hole shapes. The simulations include the coolant delivery tube and the feeding plenum chamber, and are performed for a specific mass flow rate of coolant per unit width of blade. A crossflow inlet is used on the plenum, and the resulting asymmetric flow characteristics are investigated. Coolant delivery tube flow fields are investigated in detail. Results show qualitative agreement with reported trends of improved film coverage with diffused and console holes.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3624 ◽  
Author(s):  
Zhenqing Liu ◽  
Yiran Hu ◽  
Yichen Fan ◽  
Wei Wang ◽  
Qingsong Zhou

The flow fields over a simplified 3D hill covered by vegetation have been examined by many researchers. However, there is scarce research giving the three-dimensional characteristics of the flow fields over a rough 3D hill. In this study, large eddy simulations were performed to examine the coherent turbulence structures of the flow fields over a vegetation-covered 3D hill. The numerical simulations were validated by the comparison with the wind-tunnel experiments. Besides, the flow fields were systematically investigated, including the examinations of the mean velocities and root means square of the fluctuating velocities. The distributions of the parameters are shown in a three-dimensional way, i.e., plotting the parameters on a series of spanwise slices. Some noteworthy three-dimensional features were found, and the mechanisms were further revealed by assessing the turbulence kinetic energy budget and the spectrum energy. Subsequently, the instantaneous flow fields were illustrated, from which the coherent turbulence structures were clearly identified. Ejection-sweep motion was intensified just behind the hill crest, leading to a spanwise rotation. A group of vertical rotations were generated by the shedding of the vortex from the lateral sides of the hill.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3413 ◽  
Author(s):  
Liu ◽  
Hu ◽  
Wang

Turbulent flow fields over topographies are important in the area of wind energy. The roughness, slope, and shape of a hill are important parameters affecting the flow fields over topographies. However, these effects are always examined separately. The systematic investigations of these effects are limited, the coupling between these effects is still unrevealed, and the turbulence structures as a function of these effects are still unclear. Therefore, in the present study, the flow fields over twelve simplified isolated hills with different roughness conditions, slopes, and hill shapes are examined using large eddy simulations. The mean velocities, velocity fluctuations, fractional speed-up ratios, and visualizations of the turbulent flow fields are presented. It is found that as the hill slope increases, the roughness effects become weaker, and the roughness effects will further weaken as the hill changes from 3D to 2D. In addition, the fractional speed-up ratio at the summit of rough hills can even reach to three times as large as that over the corresponding smooth hills. Furthermore, the underestimation of the ratios of spanwise fluctuation to the streamwise fluctuation by International Electrotechnical Commission (IEC) 61400-1 is quite obvious when the hill shape is 3D. Finally, coherent turbulence structures can be identified for smooth hills, and as the hill slope increases, the coherent turbulence structures will experience clear evolutions. After introducing the ground roughness, the coherent turbulence structures break into small eddies.


AIChE Journal ◽  
2013 ◽  
Vol 59 (10) ◽  
pp. 3986-4003 ◽  
Author(s):  
Zhipeng Li ◽  
Ge Song ◽  
Yuyun Bao ◽  
Zhengming Gao

2020 ◽  
Vol 201 ◽  
pp. 104178 ◽  
Author(s):  
Zhenqing Liu ◽  
Wei Wang ◽  
Yize Wang ◽  
Takeshi Ishihara

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Ittetsu Kaneda ◽  
Satoshi Sekimoto ◽  
Taku Nonomura ◽  
Kengo Asada ◽  
Akira Oyama ◽  
...  

We conducted large eddy simulations of the control of separated flow over an airfoil using body forces and discuss the role of a three-dimensional vortex structure in separation control. Two types of cases are examined: (1) the body force is distributed in a spanwise uniform layout and (2) the body force is distributed in a spanwise intermittent layout, with three-dimensional vortices being expected to be generated in the latter cases. The flow fields in the latter cases have a shorter separation bubble than those in the former cases although the total momentum of the body force in the latter cases is the same as or half of the former cases. In the flow fields of the latter type, the three-dimensional vortices, which are not observed in the former cases, are generated by the body force downstream of the body force distributed. Thus, three-dimensional vortices are considered to be effective in controlling the separated flow.


Sign in / Sign up

Export Citation Format

Share Document