Identifying trade-offs between socio-economic and environmental factors for bioenergy crop production: A case study from northern Kentucky

2019 ◽  
Vol 142 ◽  
pp. 272-283 ◽  
Author(s):  
Sandhya Nepal ◽  
Liem T. Tran
2012 ◽  
Vol 46 (17) ◽  
pp. 9777-9784 ◽  
Author(s):  
William C. Porter ◽  
Kelley C. Barsanti ◽  
Eowyn C. Baughman ◽  
Todd N. Rosenstiel

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 438 ◽  
Author(s):  
Hawes ◽  
Young ◽  
Banks ◽  
Begg ◽  
Christie ◽  
...  

The long-term sustainability of crop production depends on the complex network of interactions and trade-offs between biotic, abiotic and economic components of agroecosystems. An integrated arable management system was designed to maintain yields, whilst enhancing biodiversity and minimising environmental impact. Management interventions included conservation tillage and organic matter incorporation for soil biophysical health, reduced crop protection inputs and integrated pest management strategies for enhanced biodiversity and ecosystem functions, and intercropping, cover cropping and under-sowing to achieve more sustainable nutrient management. This system was compared directly with standard commercial practice in a split-field experimental design over a six-year crop rotation. The effect of the cropping treatment was assessed according to the responses of a suite of indicators, which were used to parameterise a qualitative multi-attribute model. Scenarios were run to test whether the integrated cropping system achieved greater levels of overall sustainability relative to standard commercial practice. Overall sustainability was rated high for both integrated and conventional management of bean, barley and wheat crops. Winter oilseed crops scored medium for both cropping systems and potatoes scored very low under standard management but achieved a medium level of sustainability with integrated management. In general, high scores for environmental sustainability in integrated cropping systems were offset by low scores for economic sustainability relative to standard commercial practice. This case study demonstrates the value of a ‘whole cropping systems’ approach using qualitative multi-attribute modelling for the assessment of existing cropping systems and for predicting the likely impact of new management interventions on arable sustainability.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Yuan Gao ◽  
Anyu Zhang ◽  
Yaojie Yue ◽  
Jing’ai Wang ◽  
Peng Su

Suitable land is an important prerequisite for crop cultivation and, given the prospect of climate change, it is essential to assess such suitability to minimize crop production risks and to ensure food security. Although a variety of methods to assess the suitability are available, a comprehensive, objective, and large-scale screening of environmental variables that influence the results—and therefore their accuracy—of these methods has rarely been explored. An approach to the selection of such variables is proposed and the criteria established for large-scale assessment of land, based on big data, for its suitability to maize (Zea mays L.) cultivation as a case study. The predicted suitability matched the past distribution of maize with an overall accuracy of 79% and a Kappa coefficient of 0.72. The land suitability for maize is likely to decrease markedly at low latitudes and even at mid latitudes. The total area suitable for maize globally and in most major maize-producing countries will decrease, the decrease being particularly steep in those regions optimally suited for maize at present. Compared with earlier research, the method proposed in the present paper is simple yet objective, comprehensive, and reliable for large-scale assessment. The findings of the study highlight the necessity of adopting relevant strategies to cope with the adverse impacts of climate change.


2020 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Wei Zhao ◽  
William Yamada ◽  
Tianxin Li ◽  
Matthew Digman ◽  
Troy Runge

In recent years, precision agriculture has been researched to increase crop production with less inputs, as a promising means to meet the growing demand of agriculture products. Computer vision-based crop detection with unmanned aerial vehicle (UAV)-acquired images is a critical tool for precision agriculture. However, object detection using deep learning algorithms rely on a significant amount of manually prelabeled training datasets as ground truths. Field object detection, such as bales, is especially difficult because of (1) long-period image acquisitions under different illumination conditions and seasons; (2) limited existing prelabeled data; and (3) few pretrained models and research as references. This work increases the bale detection accuracy based on limited data collection and labeling, by building an innovative algorithms pipeline. First, an object detection model is trained using 243 images captured with good illimitation conditions in fall from the crop lands. In addition, domain adaptation (DA), a kind of transfer learning, is applied for synthesizing the training data under diverse environmental conditions with automatic labels. Finally, the object detection model is optimized with the synthesized datasets. The case study shows the proposed method improves the bale detecting performance, including the recall, mean average precision (mAP), and F measure (F1 score), from averages of 0.59, 0.7, and 0.7 (the object detection) to averages of 0.93, 0.94, and 0.89 (the object detection + DA), respectively. This approach could be easily scaled to many other crop field objects and will significantly contribute to precision agriculture.


2021 ◽  
Vol 13 (2) ◽  
pp. 211
Author(s):  
Maële Brisset ◽  
Simon Van Wynsberge ◽  
Serge Andréfouët ◽  
Claude Payri ◽  
Benoît Soulard ◽  
...  

Despite the necessary trade-offs between spatial and temporal resolution, remote sensing is an effective approach to monitor macroalgae blooms, understand their origins and anticipate their developments. Monitoring of small tropical lagoons is challenging because they require high resolutions. Since 2017, the Sentinel-2 satellites has provided new perspectives, and the feasibility of monitoring green algae blooms was investigated in this study. In the Poé-Gouaro-Déva lagoon, New Caledonia, recent Ulva blooms are the cause of significant nuisances when beaching. Spectral indices using the blue and green spectral bands were confronted with field observations of algal abundances using images concurrent with fieldwork. Depending on seabed compositions and types of correction applied to reflectance data, the spectral indices explained between 1 and 64.9% of variance. The models providing the best statistical fit were used to revisit the algal dynamics using Sentinel-2 data from January 2017 to December 2019, through two image segmentation approaches: unsupervised and supervised. The latter accurately reproduced the two algal blooms that occurred in the area in 2018. This paper demonstrates that Sentinel-2 data can be an effective source to hindcast and monitor the dynamics of green algae in shallow lagoons.


2021 ◽  
Vol 3 ◽  
Author(s):  
N.-Han Tran ◽  
Timothy Waring ◽  
Silke Atmaca ◽  
Bret A. Beheim
Keyword(s):  

Abstract


Sign in / Sign up

Export Citation Format

Share Document