Chaotic wind power time series prediction via switching data-driven modes

2020 ◽  
Vol 145 ◽  
pp. 270-281 ◽  
Author(s):  
Tinghui Ouyang ◽  
Heming Huang ◽  
Yusen He ◽  
Zhenhao Tang
2020 ◽  
Vol 146 (7) ◽  
pp. 04020013 ◽  
Author(s):  
Siraj Muhammed Pandhiani ◽  
Parveen Sihag ◽  
Ani Bin Shabri ◽  
Balraj Singh ◽  
Quoc Bao Pham

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Irfan Haider Shakri

Purpose The purpose of this study is to compare five data-driven-based ML techniques to predict the time series data of Bitcoin returns, namely, alternating model tree, random forest (RF), multiple linear regression, multi-layer perceptron regression and M5 Tree algorithms. Design/methodology/approach The data used to forecast time series data of Bitcoin returns ranges from 8 July 2010 to 30 Aug 2020. This study used several predictors to predict bitcoin returns including economic policy uncertainty, equity market volatility index, S&P returns, USD/EURO exchange rates, oil and gold prices, volatilities and returns. Five statistical indexes, namely, correlation coefficient, mean absolute error, root mean square error, relative absolute error and root relative squared error are determined. The results of these metrices are used to develop colour intensity ranking. Findings Among the machine learning (ML) techniques used in this study, RF models has shown superior predictive ability for estimating the Bitcoin returns. Originality/value This study is first of its kind to use and compare ML models in the prediction of Bitcoins. More studies can be carried out by using further cryptocurrencies and other ML data-driven models in future.


2021 ◽  
Vol 29 (1) ◽  
pp. 4-18
Author(s):  
Jiabao Wen ◽  
Jiachen Yang ◽  
Bin Jiang ◽  
Houbing Song ◽  
Huihui Wang

2020 ◽  
Vol 12 (8) ◽  
pp. 3431
Author(s):  
Markus Gross ◽  
Vanesa Magar ◽  
Alfredo Peña

The Wind Power Density (WPD) is widely used for wind resource characterization. However, there is a significant level of uncertainty associated with its estimation. Here, we analyze the effect of sampling frequencies, averaging periods, and the length of time series on the WPD estimation. We perform this analysis using four approaches. First, we analytically evaluate the impact of assuming that the WPD can simply be computed from the cube of the mean wind speed. Second, the wind speed time series from two meteorological stations are used to assess the effect of sampling and averaging on the WPD. Third, we use numerical weather prediction model outputs and observational data to demonstrate that the error in the WPD estimate is also dependent on the length of the time series. Finally, artificial time series are generated to control the characteristics of the wind speed distribution, and we analyze the sensitivity of the WPD to variations of these characteristics. The WPD estimation error is expressed mathematically using a numerical-data-driven model. This numerical-data-driven model can then be used to predict the WPD estimation errors at other sites. We demonstrate that substantial errors can be introduced by choosing too short time series. Furthermore, averaging leads to an underestimation of the WPD. The error introduced by sampling is strongly site-dependent.


Sign in / Sign up

Export Citation Format

Share Document