Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector

2020 ◽  
Vol 147 ◽  
pp. 1801-1814 ◽  
Author(s):  
Suraj Choudhary ◽  
Anish Sachdeva ◽  
Pramod Kumar
2017 ◽  
Author(s):  
Carola Sánchez ◽  
José Macías ◽  
Jonathan León ◽  
Geancarlos Zamora ◽  
Guillermo Soriano

Passive solar water heating (SWH) is a convenient method to meet domestic hot water requirements in rural areas, where electricity may not be available or fuel supply might be limited due to difficult access. In this work, a low-cost thermosiphon flat-plate solar collector alternative is presented. The design was purposely limited to materials and recyclable products widely available in the local market, such as Tetra Pak, plastic bottles, and polypropylene (PP) fittings and pipes. Since PP is a thermoplastic polymer, a poor heat conductor, it was necessary to ensure a suitable system isolation to obtain an optimum thermal performance, comparable to commercial solar collectors. The design was built and tested in Guayaquil, Ecuadorian coastal city. Six inexpensive temperature sensors were placed at the entrance and exit of the collector, on the flat-plate and inside the hot water storage tank. Data was recorded using an Arduino single-board computer and later analyzed with the data gathered via weather station. The implementation costs of the system are approximately US$300, the overall performance during January 2017 fluctuated between 54% and 23%, and the storage tank temperature range varied from to 46°C to 33°C. Due to its reliability and affordable cost, the SWH system is an attractive alternative to an Ecuadorian commercial solar flat plate collector, which price is set between US$600 and US$700, it has an efficiency around 60%, and the average annual storage tank temperature is 62°C.


Author(s):  
Saeed Moaveni ◽  
Michael C. Watts

During the past few decades, a wide range of studies have been performed to improve the performance of flat plate solar collectors by either reducing the heat loss from a collector or by increasing the amount of solar radiation absorbed by the absorber plate. Examples of these studies include adding transparent honeycomb to fill the air gap between the glazing and absorber plate to reduce convective heat loss, replacing the air in the gap by other gases such as Argon, Krypton, Xenon and Carbon Dioxide, or adding a chemical coating such as Copper Oxide to increase absorbtance and reduce the emittance of the absorber plate. While these methods improve the collector’s efficiency, they focus primarily on limiting the natural convection that occurs in the collector cavity, or on improving the optical properties of the absorber or glazing. None of these studies have addressed the problem of heat loss due to forced convection to the surrounding ambient air in any detail. Yet, research has shown that forced convection will contribute significantly to the heat loss from a collector. Windbreaks have traditionally been used to direct wind to protect farmland, and to direct wind drifts and sand dunes. Windbreaks also have been shown to provide protection for homes from winter winds which result in reduced heating costs for buildings. While windbreaks have been traditionally used for large scale applications, there is reason to believe that similar benefits can be expected for scaled down applications such as adding a windbreak along side of a flat-plate solar collector. In this paper, we examine the feasibility of using a windbreak to provide a flat plate solar collector protection from the wind in order to improve its performance. A series of experiments were performed wherein the thermal performance of two flat-plate collectors — one without a windbreaker and one with a windbreaker — were measured. The results of these experiments are reported in this paper and the need for further studies to explore different windbreak configurations is discussed.


2018 ◽  
Vol 5 (4) ◽  
pp. 341-347 ◽  
Author(s):  
Koua Kamenan Blaise ◽  
Koffi Ekoun Paul Magloire ◽  
Gbaha Prosper

The main objective of this work is to improve the heat transfer rate by changing the design of the absorber flat plate and to compare the different results of computer-assisted fluid dynamics analysis for all designs. In this work, fluid dynamics analyzes were performed for six flat plate vacuum absorbent designs to improve temperature distribution and heat generation to improve thermal performance, variable as axial and radial speed, pressure distribution, function of flow, etc. The interpretation 4 is 15.339% more efficient than the basic design in terms of maximum temperature and thermal power, which was increased by 8.14% compared to the basic design. It is recommended that version 4 of the flat absorbent plate is optimal for better heating


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1077 ◽  
Author(s):  
Juan García-Guendulain ◽  
José Riesco-Avila ◽  
Francisco Elizalde-Blancas ◽  
Juan Belman-Flores ◽  
Juan Serrano-Arellano

Solar Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 208-222 ◽  
Author(s):  
Omar A. Hussein ◽  
Khairul Habib ◽  
Ali S. Muhsan ◽  
R. Saidur ◽  
Omer A. Alawi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document