scholarly journals Corrigendum to “Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines” [Renew. Energy 160 (2020) 396–408]

Author(s):  
Anant Kumar Rai ◽  
Arun Kumar ◽  
Thomas Staubli ◽  
Yexiang Xiao
2020 ◽  
Vol 160 ◽  
pp. 396-408
Author(s):  
Anant Kumar Rai ◽  
Arun Kumar ◽  
Thomas Staubli ◽  
Xiao Yexiang

2019 ◽  
Vol 9 (20) ◽  
pp. 4234 ◽  
Author(s):  
Cha ◽  
Oh ◽  
Cho

In this study, we investigated the characteristics of abrasive erosion considering the material properties of abrasives and targets. An abrasive particle erosion model considering energy transfer due to hardness differences was developed based on energy conservation using the correlation between volume removal and effective kinetic energy. To obtain the effective erosion kinetic energy of an abrasive, an acceleration model was derived for the abrasive particles, including terms describing the properties of the abrasive and fluid. The applicability of the suggested model was verified by comparing the brittle erosion results obtained using a previous theoretical approach to those of the present numerical analysis. The results obtained using the developed model exhibited good qualitative agreement with the brittle material erosion results. By evaluating acceleration and the erosion characteristics of an abrasive, the erosion performance could be predicted and optimized.


Landslides ◽  
2021 ◽  
Author(s):  
S. Takayama ◽  
S. Miyata ◽  
M. Fujimoto ◽  
Y. Satofuka

AbstractReducing the damage due to landslide dam failures requires the prediction of flood hydrographs. Although progressive failure is one of the main failure modes of landslide dams, no prediction method is available. This study develops a method for predicting progressive failure. The proposed method consists of the progressive failure model and overtopping erosion model. The progressive failure model can reproduce the collapse progression from a dam toe to predict the longitudinal dam shape and reservoir water level when the reservoir water overflows. The overtopping erosion model uses these predicted values as the new initial conditions and reproduces the dam erosion processes due to an overtopping flow in order to predict a flood hydrograph after the reservoir water overflows. The progressive failure model includes physical models representing the intermittent collapse of a dam slope, seepage flow in a dam, and surface flow on a dam slope. The intermittent collapse model characterizes the progressive failure model. It considers a stabilization effect whereby collapse deposits support a steep slope. This effect decreases as the collapse deposits are transported downstream. Such a consideration allows the model to express intermittent, not continuous, occurrences of collapses. Field experiments on the progressive failure of a landslide dam were conducted to validate the proposed method. The progressive failure model successfully reproduced the experimental results of the collapse progression from the dam toe. Using the value predicted by the progressive failure model, the overtopping erosion model successfully reproduced the flood hydrograph after the reservoir water started to overflow.


Author(s):  
Matthew Greve ◽  
Marcus S. Dersch ◽  
J. Riley Edwards ◽  
Christopher P. L. Barkan ◽  
Jose Mediavilla ◽  
...  

One of the most common failure modes of concrete crossties in North America is the degradation of the concrete surface at the crosstie rail seat, also known as rail seat deterioration (RSD). Loss of material beneath the rail can lead to wide gauge, rail cant deficiency, and an increased risk of rail rollover. Previous research conducted at the University of Illinois at Urbana-Champaign (UIUC) has identified five primary failure mechanisms: abrasion, crushing, freeze-thaw damage, hydro-abrasive erosion, and hydraulic pressure cracking. The magnitude and distribution of load applied to the rail seat affects four of these five mechanisms; therefore, it is important to understand the characteristics of the rail seat load distribution to effectively address RSD. As part of a larger study funded by the Federal Railroad Administration (FRA) aimed at improving concrete crossties and fastening systems, researchers at UIUC are attempting to characterize the loading environment at the rail seat using matrix-based tactile surface sensors (MBTSS). This instrumentation technology has been implemented in both laboratory and field experimentation, and has provided valuable insight into the distribution of a single load over consecutive crossties. A review of past research into RSD characteristics and failure mechanisms has been conducted to integrate data from field experimentation with existing knowledge, to further explore the role of the rail seat load distribution on RSD. The knowledge gained from this experimentation will be integrated with associated research conducted at UIUC to form the framework for a mechanistic design approach for concrete crossties and fastening systems.


2014 ◽  
Vol 43 (4) ◽  
pp. 277-283
Author(s):  
A. S. Rudyi ◽  
A. N. Kulikov ◽  
D. A. Kulikov ◽  
A. V. Metlitskaya
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document